396-channel Source Driver with Internal RAM for TFT 65536-color Displays

HITACHI

Description

The HD66770, 396-channel source driver LSI, displays 132RGB-by-176 dot graphics on TFT displays in 65,536 colors. It is for driving TFT color LCD displays to a maximum of 132RGB by 176 dots, in combination with the gate driver, HD66771 and Power supply IC, HD667P00. The HD66770's bit-operation functions, 16-bit high-speed bus interface, and high-speed RAM-write functions enable efficient data transfer and high-speed rewriting of data to the graphics RAM.

The HD66770, HD66771 and HD667P00 have various functions for reducing the power consumption of a LCD system. HD66770 has a low-voltage operation (1.8 V min.) and an internal RAM to display a maximum of 132RGB-by-176 dot color, and the HD66771 has 288 pins of TFT gate wiring driver circuit. Also, HD667P00 has the internal booster that generates the liquid crystal voltage, breeder resistance and the voltage follower circuit for liquid crystal driver. HD66770 incorporates a circuit that interfaces with the HD66771/HD667P00, it can set instructions for HD66771/HD667P00. In addition, precise power control can be achieved by combining these hardware functions with software functions, such as an 8-color display and standby and sleep mode. This LSI is suitable for any medium-sized or small portable battery-driven product requiring long-term driving capabilities, such as digital cellular phones supporting a WWW browser, bi-directional pagers, and small PDAs.

Features

- 132RGB x 176-dot graphics display LCD controller/driver for 65,536 TFT colors (when HD66771/HD667P00 are used)
- 16-/8-bit high-speed bus interface and serial peripheral interface (SPI)
- High-speed burst-RAM write function
- Writing to a window-RAM address area by using a window-address function
- Bit-operation functions for graphics processing:
- Write-data mask function in bit units
- Logical operation in pixel unit and conditional write function
- Various color-display control functions:
- 65,536 colors can be displayed at the same time (gamma adjust included)
- Vertical scroll display function in raster-row units

- Low-power operation supports:
- Vcc = 1.8 to 3.3 V (low-voltage range)
- DDVDH = 4.5 to 5.5 V (liquid crystal drive voltage)
- Power-save functions such as the standby mode and sleep mode
- Partial LCD drive of two screens in any position
- Maximum 12-times step-up circuit for liquid crystal drive voltage (HD667P00)
- Voltage followers to decrease direct current flow in the LCD drive bleeder-resistors (HD66770)
- Built-in circuit for interfacing with the gate driver, HD66771 and Power supply IC, (HD667P00)
- Maximum 132RGB-by-176-dot display in combination with the HD66771 and HD667P00
- Internal RAM capacity: 46,464 bytes
- 396-source liquid crystal display driver
- n-raster-row inversion drive (It is possible to LCD driving voltage inversion reverse the polarity in every selected raster-row.)
- Internal oscillation and hardware reset
- Shift change of source driver

Type Numbers

Type Number	External Appearance
HCD667A70BP	Die with gold bump (Straight output arrangement)
HCD667B70BP	Die with gold bump (Laced output arrangement)

HD66770 Block Diagram Description

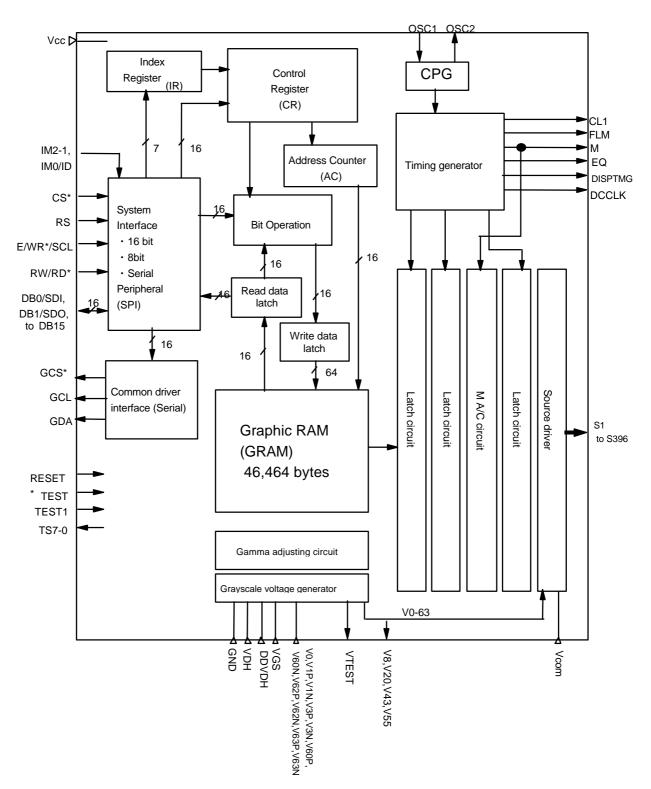


Figure 1: HD66770 Block Diagram Description

Rev.1.1 / April 2002

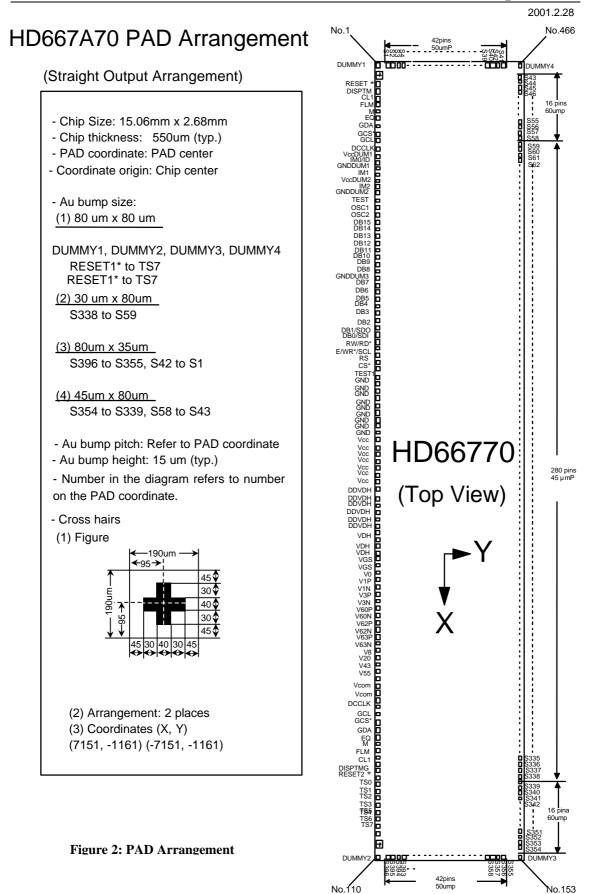
Pin Functions

Signals	Number of Pins	I/O	Connected to	Functions
IM2-1, IM0/ID	3	Ι	GND or V _{CC}	Selects the MPU interface mode: IM2 IM1 IM0/I MPU interface mode "GND" "GND" "GND" 68-system 16-bits bus interface "GND" "GND" "Vcc" 68-system 8-bit bus interface "GND" "Vcc" "GND" 80-system 8-bit bus interface "GND" "Vcc" "So-system 8-bit bus interface "GND" "Vcc" 80-system 8-bit bus interface "Vcc "GND" ID Serial peripheral interface (SPI) When a serial interface is selected, the IM0 pin is used set the ID setting for a darker gate
CS*	1	I	MPU	as the ID setting for a device code. Selects the HD66770: Low: HD66770 is selected and can be accessed High: HD66770 is not selected and cannot be accessed Must be fixed at GND level when not in use.
RS	1	Ι	MPU	Selects the register. Low: Index/status High: Control
E/WR*/SCL	1	Ι	MPU	For a 68-system bus interface, serves as an enable signal to activate data read/write operation.For an 80-system bus interface, serves as a write strobe signal and writes data at the low level.For a synchronous clock interface, serves as the
RW/RD*	1	I	MPU	 synchronous clock signal. For a 68-system bus interface, serves as a signal to select data read/write operation. Low: Write High: Read For an 80-system bus interface, serves as a read strobe signal and reads data at the low level.
DB0/SDI	1	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a clock-synchronous serial interface, serves as the serial data input pin (SDI). The input level is read on the rising edge of the SCL signal.
DB1/SDO	1	I/O	MCU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.
				For a clock-synchronous serial interface, serves as a serial data output pin (SDO). Successive bit values are output on the falling edge of the SCL signal.
DB2-DB15	14	I/O	MPU	Serves as a 16-bit bi-directional data bus. For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the Vcc or GND level.

Table 1Pin Functional Description

(Continue to the Next page)

Rev.1.1 / April 2002

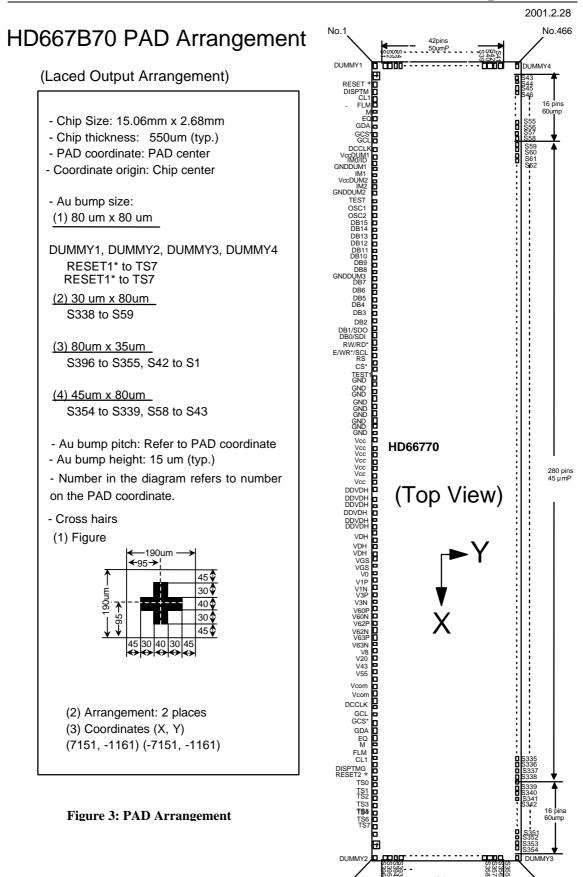

Signals	Number of Pins	I/O	Connected to	Functions
\$1–\$396	396	Ο	LCD	Output signals are for liquid crystal voltage. The SS bit can change the shift direction of the source signal. For example, if $SS = 0$, RAM address 0000 is output from S1. If $SS = 1$, it is output from S396. S1, S4, S7, display red (R), S2, S5, S8, display green (G), and S3, S6, S9, display blue (B) (SS = 0).
CL1	1	0	HD66771	The one-raster-row-cycle pulse is output.
М	1	0	HD667P00	The AC-cycle signal is output.
FLM	1	0	HD66771	The frame-start pulse is output.
EQ	1	0	HD667P00	Indicate setting of the Vcom output to its high-impedance state during transitions of Vcom when Vcom is being AC- cycled.
DISPTMG	1	0	HD66771	Low: VcomH or VcomL is being output on the Vcom pin. High: Vcom pin is in high-impedance state Gate off signal in the partial display "Low" : Output Voff signal
				"High" : Output normal signal
DCCLK	1	0	HD667P00	
GCL	1	0	HD66771	Outputs clock for the step-up circuit of HD667P00. Clock signal for a serial transfer of register setting values
OCL	1	0	HD667P00	to the gate driver and the power supply IC. Data is output on the falling edge of this clock.
GDA	1	0	HD66771 HD667P00	Data signal for serial transfer as register setting values to the gate driver and The power supply IC.
GCS*	1	0	HD66771	Chip-select for the HD66771 and HD667P00.
			HD667P00	Low: the HD66771/HD667P00 are selected and can receive a serial transfer data.
				High: the HD66771/HD667P00 are not selected and cannot receive a serial transfer data.
DDVDH	1	Ι	HD667P00	Input power supply for LCD drive circuit, which can be provided by HD667P00. DDVDH : +4.5 to +5.5 V
VDH	1	Ι	HD667P00	This is the standard level of grayscale voltage generator, which can be provided by HD667P00. VDH (max.) : DDVDH $- 0.5 \text{ V}$
Vcom	1	Ι	HD667P00	It is a signal for equalizing function. All LCD driver's outputs (S1 to S396) are short to Vcom level (Hi-Z) in EQ = "High" period. Must be left disconnected when VcomL < 0 V.
V _{CC} , GND	2	_	Power supply	V _{CC} : + 1.8 V to + 3.6 V; GND (logic): 0 V
OSC1, OSC2	2	I or O	Oscillation- resistor	Connect an external resistor for R-C oscillation. When input the clock from outside, input to OSC1, and open OSC2.
RESET1* RESET2*	2	Ι	MPU or external R-C circuit	Reset pin. Initializes the LSI when low. Must be reset after power-on.

(Continue to the Next page)

Rev.1.1 / April 2002

Signals	Number of Pins	I/O	Connected to	Functions
VccDUM		0	Input pins	Outputs the internal V_{CC} level; shorting this pin sets the adjacent input pin to the V_{CC} level.
GNDDUM		0	Input pins	Outputs the internal GND level; shorting this pin sets the
				adjacent input pin to the GND level.
Dummy			—	Dummy pad. Must be left disconnected.
TEST	1	Ι	GND	Test pin. Must be fixed at GND level.
V0, V1P, V3P, V60P, V62P, V63P	6	I/O	Stabilized capacitor	When built-in op-amp is on (SAP2-0="001", "010", "011", "100", "101"), it is for outputs of positive polar (V0 is for positive/negative polar) built-in op-amp. Connect condenser and stabilize the condition.
V1N, V3N, V60N, V62N, V63N	5	I/O	Stabilized capacitor	When built-in op-amp is on (SAP2-0="001", "010", "011", "100", "101"), it is for outputs of negative polar built-in op-amp. Connect condenser and stabilize the condition.
V8, V20, V43, V55	4	0	Open	Test pin. Must be left disconnected.
VGS	1	Ι	GND or External resistor	This is the standard level of grayscale voltage generator. Connect external variable resistor when the level is adjusted for every panel with the source driver.
VTEST	1	0	Open	Test pin. Must be left disconnected.
TS0-TS7	8	0	Open	Test pin. Must be left disconnected.
TEST1	1	Ι	GND or Vcc	Test pin. Must be connected at GND or Vcc.

Rev.1.1 / April 2002


No. pad name X Y No. pad name X Y 1 DUMMY1 -7398 -1208 66 DDVDH 1326 -1208 131 S376 7398 -25 2 RESET1* -6330 -1208 68 VDH 1426 -1208 133 S374 7398 125 4 CL1 -6630 -1208 69 VDH 1676 -1208 135 S372 7398 125 5 FLM -6480 -1208 70 VDH 1877 -1208 135 S372 7398 225 7 EQ -6180 -1208 71 VDH 1877 -1208 130 S368 7398 225 7 EQ -6180 -1208 74 VO 2277 -1208 140 S367 7398 425 11 DCCLK -573 -1208 74 VO 2277 -1208	No. pad na 196 S312 197 S311 198 S300 200 S308 201 S307 202 S305 203 S305 204 S304 205 S303 206 S302 207 S301 208 S300 209 S299 210 S298 211 S296	Ame X 5108 5063 5018 4973 4973 4928 4883 4838 4793 4748 4703 4658 4613 4613	Y 1208 1208 1208 1208 1208 1208 1208 1208
2 RESET1* -6931 -1208 67 DDVDH 1426 -1208 132 S375 7398 25 3 DISPTMG -6780 -1208 68 VDH 1576 -1208 133 S374 7398 125 5 FLM -6480 -1208 70 VDH 177 -1208 135 S372 7398 175 6 M -6330 -1208 71 VDH 1377 -1208 135 S372 7398 225 7 EQ -6180 -1208 73 VGS 22177 -1208 138 S369 7398 325 9 GCC -5730 -1208 76 V1N 22577 -1208 144 S364 7398 525 11 DCCLK -5579 -1208 76 V1N 22577 -1208 144 S364 7398 525 13 IMO/ID -5329 -1208<	197 \$311 198 \$310 199 \$309 200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	5063 5018 4973 4928 4883 4883 4793 4748 4703 4658	1208 1208 1208 1208 1208 1208 1208 1208
3 DISPTMG -6780 -1208 68 VDH 1576 -1208 133 S374 7398 75 4 CL1 -6630 -1208 69 VDH 1676 -1208 134 S373 7398 175 5 FLM -6480 -1208 71 VDH 1877 -1208 135 S371 7398 225 7 EQ -6180 -1208 73 VGS 2217 1208 138 S369 7398 325 9 GCS -5880 -1208 76 V1P 2427 -1208 140 S367 7398 425 11 DCCL -5579 -1208 76 V1N 2577 -1208 144 S364 7398 575 13 IMO/ID -5329 -1208 79 V60P 3027 -1208 144 S364 7398 575 14 GNDDUM1 -5429 -1208 <td>198 \$310 199 \$309 200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$302 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296</td> <td>5018 4973 4928 4883 4838 4793 4748 4703 4658</td> <td>1208 1208 1208 1208 1208 1208 1208 1208</td>	198 \$310 199 \$309 200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$302 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	5018 4973 4928 4883 4838 4793 4748 4703 4658	1208 1208 1208 1208 1208 1208 1208 1208
4 CL1 -6630 -1208 69 VDH 1676 -1208 134 S373 7398 125 5 FLM -6480 -1208 70 VDH 1776 -1208 136 S371 7398 275 6 M -6330 -1208 72 VGS 2027 -1208 138 S369 7398 225 7 EQ -6180 -1208 73 VGS 2127 -1208 138 S369 7398 325 9 GCS* -5880 -1208 74 VO 2277 1208 140 S367 7398 425 10 GCL -5730 -1208 76 V1N 2577 -1208 141 S364 7398 525 13 IMOID -5329 +1208 78 V60P 3027 +1208 144 S364 7398 766 16 VCCDUM2 -5029 +1208	199 \$309 200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$302 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4973 4928 4883 4888 4793 4748 4703 4703 4658	1208 1208 1208 1208 1208 1208 1208
5 FLM -6480 -1208 70 VDH 1776 -1208 135 S372 7398 175 6 M -6330 -1208 71 VDH 1877 -1208 136 S371 7398 2275 7 EQ -6180 -1208 73 VGS 2127 -1208 139 S368 7398 225 9 GCS* -5580 -1208 74 VO 2277 -1208 140 S367 7398 425 10 DCCLK -5579 -1208 76 V1N 2577 -1208 140 S367 7398 475 12 VCCDUM1 -5329 -1208 77 V3P 2727 -1208 142 S365 7398 525 13 IMO/D -5329 -1208 70 V3P 2727 -1208 144 S363 7398 626 14 IMDUM1 -5129 -1208 <td>200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296</td> <td>4928 4883 4838 4793 4748 4703 4658</td> <td>1208 1208 1208 1208 1208 1208</td>	200 \$308 201 \$307 202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4928 4883 4838 4793 4748 4703 4658	1208 1208 1208 1208 1208 1208
6 M -6330 -1208 71 VDH 1877 -1208 136 S371 7398 225 7 EQ -6180 -1208 72 VGS 2027 -1208 137 S370 7398 225 8 GDA -6030 -1208 73 VGS 2127 -1208 138 S369 7398 325 9 GCS* -5680 -1208 76 V1P 2427 -1208 140 S367 7398 425 10 GCL -5730 -1208 76 V1N 2577 -1208 144 S366 7398 525 13 IMO/D -5329 -1208 78 V3N 2877 -1208 144 S363 7398 676 14 GNDDUM1 -5229 -1208 80 V60N 3178 -1208 144 S361 7398 776 14 GNDDUM2 -6229 -1208 <td>201 \$307 202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296</td> <td>4883 4838 4793 4748 4703 4658</td> <td>1208 1208 1208 1208 1208</td>	201 \$307 202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4883 4838 4793 4748 4703 4658	1208 1208 1208 1208 1208
T EQ -6180 -1208 72 VGS 2027 -1208 137 S370 7398 275 8 GDA -6030 -1208 73 VGS 2127 -1208 138 S369 7398 325 9 GCS* -5880 -1208 74 VO 2277 -1208 139 S369 7398 325 10 GCL -5730 -1208 76 V1P 2427 -1208 141 S366 7398 425 11 DCCLK -5579 -1208 77 V3P 2777 -1208 141 S364 7398 575 13 IMO/ID -5329 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 81 V62P 3328 +1208 144 S362 7398 726 17 IM2 -4929 +1208	202 \$306 203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4838 4793 4748 4703 4658	1208 1208 1208 1208
8 GDA -6030 -1208 73 VGS 2127 -1208 138 S369 7398 325 9 GCS* -5880 -1208 75 VIP 2427 -1208 139 S368 7398 375 10 GCL -5730 -1208 76 VIN 2577 -1208 141 S366 7398 425 11 DCCLK -5579 -1208 77 V3P 2727 -1208 141 S364 7398 575 12 VCCDUM1 -5429 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 80 V60N 3178 +1208 146 S361 7398 676 16 VCCDUM2 -5029 +1208 81 V62P 3328 +1208 144 S360 7398 876 17 IM2 -4229 +	203 \$305 204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4793 4748 4703 4658	1208 1208 1208
9 GCS* -5880 -1208 74 V0 2277 -1208 139 S368 7398 375 10 GCL -5730 -1208 75 V1P 2427 -1208 140 S367 7398 425 11 DCCLK -5579 -1208 76 V1N 2577 -1208 141 S366 7398 425 12 VCCDUM1 -5429 -1208 78 V3N 2877 -1208 144 S363 7398 626 13 IMO/ID -5329 -1208 80 V60P 3027 -1208 144 S363 7398 676 16 VCCDUM2 -5029 -1208 80 V60P 3178 -1208 144 S361 7398 726 17 IM2 -4929 -1208 82 V62N 3478 -1208 144 S361 7398 926 20 OSC1 -4579 <	204 \$304 205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4748 4703 4658	1208 1208
10 GCL -5730 -1208 75 V1P 2427 -1208 140 S367 7398 425 11 DCCLK -5579 -1208 77 V3P 2727 -1208 141 S366 7398 475 12 VCCDUM1 -5429 -1208 78 V3N 2877 -1208 144 S364 7398 525 13 IMO/D -5529 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 80 V6DN 3178 -1208 146 S361 7398 726 17 IM2 -4929 -1208 83 V63P 3628 -1208 144 S361 7398 776 18 GNDDUM2 -4829 -1208 84 V63N 3778 +1208 149 S357 7398 926 21 OSC2 -4429	205 \$303 206 \$302 207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296	4703 4658	1208
11 DCCLK -5579 -1208 76 V1N 2577 -1208 141 S366 7398 475 12 VCCDUM1 -5429 -1208 77 V3P 2727 -1208 144 S364 7398 525 13 IMO/ID -5329 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 80 V60P 3027 -1208 144 S363 7398 726 16 VCCDUM2 -5029 -1208 81 V62P 3328 -1208 144 S363 7398 726 17 IM2 -4929 -1208 83 V63P 3628 -1208 144 S359 7398 826 19 TEST -4729 -1208 85 V8 3928 -1208 150 S357 7398 926 21 OSC2 -4429	206 S302 207 S301 208 S300 209 S299 210 S298 211 S297 212 S296	4658	
12 VCCDUM1 -5429 -1208 77 V3P 2727 -1208 142 S365 7398 525 13 IMO/ID -5329 -1208 79 V60P 3027 -1208 144 S364 7398 575 14 GNDDUM1 -5229 -1208 80 V60N 3178 -1208 144 S362 7398 676 15 IM1 -5129 -1208 81 V62P 3328 -1208 144 S361 7398 776 16 VCCDUM2 -5029 -1208 82 V62N 3478 -1208 144 S360 7398 776 13 GNDDUM2 -4829 -1208 84 V63N 3778 -1208 149 S358 7398 876 20 OSC1 -4579 -1208 87 V43 4128 -1208 151 S357 7398 926 21 OSC2 -4429	207 \$301 208 \$300 209 \$299 210 \$298 211 \$297 212 \$296		1208
13 IMO/ID -5329 -1208 78 V3N 2877 -1208 144 S364 7398 575 14 GNDDUM1 -5229 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 81 V62P 3328 -1208 145 S362 7398 676 16 VCCDUM2 -4929 -1208 81 V62P 3328 -1208 146 S361 7398 766 17 IM2 -4929 -1208 83 V63P 3628 -1208 148 S359 7398 876 19 TEST -4729 -1208 86 V20 4028 -1208 151 S356 7398 976 22 DB15 -4278 -1208 87 V43 4128 -1208 151 S355 7398 1026 23 DB14 -4128	208 S300 209 S299 210 S298 211 S297 212 S296	4613	
14 GNDDUM1 -5229 -1208 79 V60P 3027 -1208 144 S363 7398 626 15 IM1 -5129 -1208 81 V62P 3328 -1208 144 S362 7398 676 16 VCCDUM2 -5029 -1208 81 V62P 3328 -1208 144 S360 7398 776 17 IM2 -4929 -1208 83 V63P 3628 -1208 144 S359 7398 826 19 TEST -4729 -1208 85 V8 3928 -1208 149 S358 7398 826 20 OSC1 -4579 -1208 85 V8 3928 -1208 155 S355 7398 926 21 DS15 -4278 1208 87 V43 4128 -1208 155 S355 7398 916 22 DB15 -4278	209 S299 210 S298 211 S297 212 S296	4568	1208 1208
15 IM1 -5129 -1208 80 V60N 3178 -1208 145 S362 7398 676 16 VCCDUM2 -5029 -1208 81 V62P 3328 -1208 146 S361 7398 726 17 IM2 -4929 -1208 83 V63P 3628 -1208 144 S359 7398 826 19 TEST -4729 -1208 84 V63N 3778 -1208 148 S359 7398 926 20 OSC1 -4579 -1208 86 V20 4028 -1208 151 S356 7398 976 23 DB14 -4128 1208 87 V43 4128 -1208 154 S354 7232 1208 24 DB13 -3978 +1208 89 VTEST 4328 +1208 155 S353 7172 1208 25 DB12 -3828 <	210 S298 211 S297 212 S296	4508	1208
16 VCCDUM2 -5029 -1208 81 V62P 3328 -1208 146 S361 7398 726 17 IM2 -4929 -1208 82 V62N 3478 -1208 147 S360 7398 776 18 GNDDUM2 -4829 -1208 83 V63P 3628 -1208 144 S359 7398 826 19 TEST -4729 -1208 84 V63N 3778 -1208 149 S358 7398 876 20 OSC1 -4579 -1208 85 V8 3928 -1208 150 S357 7398 976 21 OSC2 -4429 -1208 87 V43 4128 -1208 151 S356 7398 976 23 DB15 -4278 -1208 89 VTEST 4328 -1208 153 DUMMY3 7398 1208 24 DB13 -3978	211 S297 212 S296	4478	1208
17 IM2 -4929 -1208 82 V62N 3478 -1208 147 S360 7398 776 18 GNDDUM2 -4829 -1208 83 V63P 3628 -1208 144 S359 7398 826 19 TEST -4729 -1208 84 V63N 3778 -1208 149 S358 7398 876 20 OSC1 -4579 -1208 85 V8 3928 -1208 150 S357 7398 926 21 OSC2 -4429 -1208 86 V/20 4028 -1208 151 S356 7398 926 22 DB15 -4278 -1208 87 V43 4128 -1208 152 S355 7398 1026 23 DB14 -4128 -1208 89 VTEST 4328 -1208 155 S353 7172 1208 25 DB10 -3528	212 S296	4433	1208
18 GNDDUM2 -4829 -1208 83 V63P 3628 -1208 148 S359 7398 826 19 TEST -4729 -1208 84 V63N 3778 -1208 149 S358 7398 876 20 OSC1 -4579 -1208 86 V20 4028 -1208 150 S357 7398 926 21 OSC2 -4429 -1208 86 V20 4028 -1208 151 S356 7398 976 22 DB15 -4278 -1208 87 V43 4128 -1208 151 S355 7398 1026 23 DB14 -4128 -1208 89 VTEST 4328 -1208 154 S354 7732 1208 24 DB13 -3978 -1208 99 VCOM 4479 -1208 155 S351 7052 1208 26 DB10 -3528		4388	1208
19 TEST -4729 -1208 84 V63N 3778 -1208 149 S358 7398 876 20 OSC1 -4579 -1208 85 V8 3928 -1208 150 S357 7398 926 21 OSC2 -4429 -1208 86 V20 4028 -1208 151 S355 7398 926 22 DB15 -4278 -1208 87 V43 4128 -1208 152 S355 7398 1026 23 DB14 -4128 -1208 89 VTEST 4328 -1208 154 S354 7232 1208 24 DB13 -3978 -1208 90 VCOM 4479 -1208 155 S353 7172 1208 25 DB10 -3678 +1208 91 VCOM 4579 -1208 155 S351 7052 1208 27 DB10 -3528 <		4343	1208
20 OSC1 -4579 -1208 85 V8 3928 -1208 150 S357 7398 926 21 OSC2 -4429 -1208 86 V20 4028 -1208 151 S356 7398 976 22 DB14 -4128 -1208 87 V43 4128 -1208 151 S356 7398 1026 23 DB14 -4128 -1208 88 V55 4228 -1208 154 S354 7328 1208 24 DB13 -3978 -1208 90 VCOM 4479 -1208 155 S353 7172 1208 25 DB12 -3828 -1208 91 VCOM 4579 -1208 155 S351 7052 1208 27 DB10 -3578 -1208 93 GCL 4879 -1208 155 S350 6991 1208 29 DB3 -3277	214 S294	4298	1208
21 OSC2 -4429 -1208 86 V20 4028 -1208 151 S356 7398 976 22 DB15 -4278 -1208 87 V43 4128 -1208 152 S355 7398 1026 23 DB14 -4128 -1208 88 V55 4228 -1208 153 DUMMY3 7398 1208 24 DB13 -3978 -1208 89 VTEST 4328 -1208 154 S354 7232 1208 25 DB11 -3678 -1208 91 VCOM 4479 -1208 155 S353 7172 1208 26 DB11 -3678 -1208 93 CCL 4779 -1208 156 S352 7112 1208 27 DB10 -3528 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB3 -3228	215 S293	4253	1208
22 DB15 -4278 -1208 87 V43 4128 -1208 152 S355 7398 1026 23 DB14 -4128 -1208 88 V55 4228 -1208 153 DUMMY3 7398 1208 24 DB13 -3978 -1208 89 VTEST 4328 -1208 154 S354 7732 1208 25 DB12 -3828 -1208 90 VCOM 4479 -1208 155 S353 7172 1208 26 DB10 -3528 -1208 91 VCOM 4579 -1208 155 S351 7052 1208 28 DB9 -3378 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB8 -3228 -1208 93 GCL 4879 -1208 159 S349 6931 1208 30 GNDDUM3 -3077	216 S292	4208	1208
24 DB13 -3978 -1208 89 VTEST 4328 -1208 154 S354 7232 1208 25 DB12 -3828 -1208 90 VCOM 4479 -1208 155 S353 7172 1208 26 DB10 -3678 -1208 91 VCOM 4579 -1208 155 S353 7172 1208 27 DB10 -3528 -1208 92 DCCLK 4729 -1208 155 S351 7052 1208 28 DB9 -3378 -1208 93 GCL 4879 -1208 159 S351 7052 1208 29 DB8 -3228 -1208 94 GCS* 5029 -1208 160 S349 6931 1208 30 GNDDUM3 -3077 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777	217 S291	4163	1208
25 DB12 -3828 -1208 90 VCOM 4479 -1208 155 S353 7172 1208 26 DB11 -3678 -1208 91 VCOM 4579 -1208 155 S353 7172 1208 27 DB10 -3528 -1208 92 DCCLK 4729 -1208 157 S351 7052 1208 28 DB9 -3378 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB8 -3228 -1208 94 GCS* 5029 -1208 159 S349 6931 1208 30 GNDDUM3 -3077 -1208 95 GDA 5179 -1208 160 S348 6871 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777	218 S290	4118	1208
26 DB11 -3678 -1208 91 VCOM 4579 -1208 156 S352 7112 1208 27 DB10 -3528 -1208 92 DCCLK 4729 -1208 157 S351 7052 1208 29 DB9 -3378 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB8 -33228 -1208 94 GCS* 5029 -1208 159 S349 6931 1208 30 GNDDUM3 -3077 -1208 95 GDA 5179 -1208 160 S348 6871 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 163 S344 6631 1208 33 DB5 -2627 <t< td=""><td>219 S289</td><td>4073</td><td>1208</td></t<>	219 S289	4073	1208
27 DB10 -3528 -1208 92 DCCLK 4729 -1208 157 S351 7052 1208 28 DB9 -3378 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB8 -3228 -1208 94 GCS* 5029 -1208 159 S349 6931 1208 30 GNDDUM3 -3077 -1208 95 GDA 5179 -1208 160 S348 6871 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 162 S346 6751 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 164 S344 6631 1208 34 DB4 -2477 -	220 S288	4028	1208
28 DB9 -3378 -1208 93 GCL 4879 -1208 158 S350 6991 1208 29 DB8 -3228 -1208 94 GCS* 5029 -1208 159 S349 6031 1208 30 GCL 4879 -1208 159 S349 6031 1208 30 GOS -1208 169 S349 6031 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 162 S346 6751 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 164 S344 6631 1208 34 DB4 -2477 -1	221 S287	3983	1208
29 DB8 -3228 -1208 94 GCS* 5029 -1208 159 S349 6931 1208 30 GNDDUM3 -3077 -1208 95 GDA 5179 -1208 160 S348 6871 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 162 S346 6751 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 162 S344 6631 1208 34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S344 6631 1208 36 DB2 -2177 -1208 100 INSPTMG 5930 -1208 166 S342 6571 1208 37 DB1/SDO -2027	222 S286	3938	1208
30 GNDDUM3 -3077 -1208 95 GDA 5179 -1208 160 S348 6871 1208 31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 162 S345 6671 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 163 S345 6691 1208 34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S344 6631 1208 35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 165 S343 6571 1208 36 DB2 -2177 -1208 101 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027	223 S285	3893	1208
31 DB7 -2927 -1208 96 EQ 5329 -1208 161 S347 6811 1208 32 DB6 -2777 -1208 97 M 5479 -1208 162 S346 6751 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 163 S345 6691 1208 34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S344 6631 1208 35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 166 S343 6571 1208 36 DB2 -2177 -1208 101 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027 -1208 102 TSO 6230 -1208 166 S340 6390 1208 38 DB0/SD1 -1877	224 S284	3848	1208
32 DB6 -2777 -1208 97 M 5479 -1208 162 S346 6751 1208 33 DB5 -2627 -1208 98 FLM 5630 -1208 163 S345 6691 1208 34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S345 6691 1208 35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 165 S343 6571 1208 36 DB2 -2177 -1208 101 RESET2* 6080 -1208 165 S343 6571 1208 37 DB1/SDO -2027 -1208 101 RESET2* 6080 -1208 165 S341 6450 1208 38 DB0/SD1 -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 38 DB0/SD1 -18	225 S283	3803	1208
33 DB5 -2627 -1208 98 FLM 5630 -1208 163 S345 6691 1208 34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S344 6631 1208 35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 164 S344 6631 1208 36 DB2 -2177 -1208 101 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027 -1208 102 TS0 6230 -1208 167 S341 6450 1208 38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WRD* -17	226 S282	3758	1208
34 DB4 -2477 -1208 99 CL1 5780 -1208 164 S344 6631 1208 35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 165 S343 6571 1208 36 DB2 -2177 -1208 100 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027 -1208 102 TS0 6230 -1208 166 S342 6510 1208 38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 1208 104 TS2 6430 -1208 169 S339 6330 1208 39 RW/RD* -1766 1208 105 TS3 6530 -1208 169 S337 6233 1208 41 RS -142	227 S281 228 S280	3713	1208 1208
35 DB3 -2327 -1208 100 DISPTMG 5930 -1208 165 S343 6571 1208 36 DB2 -2177 -1208 101 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027 -1208 102 TS0 6230 -1208 167 S341 6450 1208 38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* <td< td=""><td>228 S280 229 S279</td><td>3668 3623</td><td>1208</td></td<>	228 S280 229 S279	3668 3623	1208
36 DB2 -2177 -1208 101 RESET2* 6080 -1208 166 S342 6510 1208 37 DB1/SDO -2027 -1208 102 TS0 6230 -1208 167 S341 6450 1208 38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 -1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	230 S278	3578	1208
37 DB1/SDO -2027 -1208 102 TSO 6230 -1208 167 S341 6450 1208 38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 -1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	230 S278	3533	1208
38 DB0/SDI -1877 -1208 103 TS1 6330 -1208 168 S340 6390 1208 39 RW/RD* -1726 -1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	232 S276	3488	1208
39 RW/RD* -1726 -1208 104 TS2 6430 -1208 169 S339 6330 1208 40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	233 S275	3443	1208
40 E/WR*/SCL -1576 -1208 105 TS3 6530 -1208 170 S338 6278 1208 41 RS -1426 -1208 106 TS4 6630 -1208 171 S337 6233 1208 42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	234 S274	3398	1208
42 CS* -1276 -1208 107 TS5 6730 -1208 172 S336 6188 1208	235 S273	3353	1208
	236 S272	3308	1208
	237 S271	3263	1208
43 TEST1 -1126 -1208 108 TS6 6830 -1208 173 S335 6143 1208	238 S270	3218	1208
44 GND -976 -1208 109 TS7 6931 -1208 174 S334 6098 1208	239 S269	3173	1208
45 GND -876 -1208 110 DUMMY2 7398 -1208 175 S333 6053 1208	240 S268	3128	1208
46 GND -776 -1208 111 S396 7398 -1026 176 S332 6008 1208	241 S267	3083	1208
47 GND -676 -1208 112 S395 7398 -976 177 S331 5963 1208	242 S266	3038	1208
48 GND -575 -1208 113 S394 7398 -926 178 S330 5918 1208	243 S265	2993	1208
49 GND -475 -1208 114 S393 7398 -876 179 S329 5873 1208	244 S264	2948	1208
50 GND -375 -1208 115 S392 7398 -826 180 S328 5828 1208 51 GND -275 -1208 116 S391 7398 -776 181 S327 5783 1208	245 S263 246 S262	2903	1208 1208
51 GND -275 -1208 116 S391 7398 -776 181 S327 5783 1208 52 GND -175 -1208 117 S390 7398 -726 182 S326 5738 1208	246 S262 247 S261	2858 2813	1208
52 GND -175 -1206 117 5390 7396 -726 162 5326 5736 1206 53 GND -75 -1208 118 5389 7398 -676 183 5325 5693 1208	247 S261 248 S260	2013	1208
54 VCC 75 -1208 119 S388 7398 -626 184 S324 5648 1208	248 S200	2708	1208
55 VCC 175 -1208 120 S387 7398 -575 185 S323 5603 1208	250 S258	2678	1208
56 VCC 275 -1208 121 S386 7398 -525 186 S322 5558 1208	251 S257	2633	1208
57 VCC 375 -1208 122 S385 7398 -475 187 S321 5513 1208	252 S256	2588	1208
58 VCC 475 -1208 123 S384 7398 -425 188 S320 5468 1208	253 S255	2543	1208
59 VCC 575 -1208 124 S383 7398 -375 189 S319 5423 1208	254 S254	2498	1208
60 VCC 676 -1208 125 S382 7398 -325 190 S318 5378 1208	255 S253	2453	1208
61 DDVDH 826 -1208 126 S381 7398 -275 191 S317 5333 1208	256 S252	2408	1208
62 DDVDH 926 -1208 127 S380 7398 -225 192 S316 5288 1208	257 S251	2363	1208
63 DDVDH 1026 -1208 128 S379 7398 -175 193 S315 5243 1208		2318	1208
64 DDVDH 1126 -1208 129 S378 7398 -125 194 S314 5198 1208	258 S250	2273	1208
65 DDVDH 1226 -1208 130 S377 7398 -75 195 S313 5153 1208	258 S250 259 S249	2228	1208

Rev.1.1 / April 2002

					H	D66770	PAD Co	ordina	ate (Straight)						
No.	pad name	х	Y	No.	pad name	х	Y	No.	pad name	Х	Y	No.	pad name	х	Y
261	S247	2183	1208	326		-743	1208		S117	-3668	1208	456	S52	-6691	1208
262	S246	2138	1208	327	S181	-788	1208	392	S116	-3713	1208	457	S51	-6751	1208
		2093	1208		S180	-833	1208	_	S115	-3758	1208	458	S50	-6811	1208
-	S244	2048	1208	_	S179	-878	1208	_	S114	-3803	1208	459	S49	-6871	1208
	S243	2003	1208	_	S178	-923	1208	-	S113	-3848	1208	460		-6931	1208
	S242	1958	1208		S177	-968	1208	_	S112	-3893	1208	461	S47	-6991	1208
267	S241	1913	1208	_	S176	-1013	1208	-		-3938	1208	462	S46	-7052	1208
	S240 S239	1868 1823	1208 1208	_	S175 S174	-1058 -1103	1208 1208	_	S110 S109	-3983 -4028	1208 1208	463 464	S45 S44	-7112 -7172	1208 1208
209		1778	1208	_	S174 S173	-1148	1208		S109 S108	-4028	1208	464	S44 S43	-7172	1208
-	S230 S237	1733	1208		S173 S172	-1148	1208		S108 S107	-4073	1208	465	DUMMY4	-7398	1208
272	S237 S236	1688	1208	_	S172 S171	-1238	1208	_	S107	-4163	1208	467	S42	-7398	1026
		1643	1208		S170	-1283	1208	-	S105	-4208	1208	468	S41	-7398	976
	S234	1598	1208		S169	-1328	1208	_	S104	-4253	1208	469	S40	-7398	926
275		1553	1208	_	S168	-1373	1208	-	S103	-4298	1208	470	S39	-7398	876
276	S232	1508	1208	_	S167	-1418	1208	_	S102	-4343	1208	471	S38	-7398	826
	S231	1463	1208	342	S166	-1463	1208	407	S101	-4388	1208	472	S37	-7398	776
278	S230	1418	1208	343	S165	-1508	1208	408	S100	-4433	1208	473	S36	-7398	726
279	S229	1373	1208	344	S164	-1553	1208	409	S99	-4478	1208	474	S35	-7398	676
		1328	1208		S163	-1598	1208	410	S98	-4523	1208	475	S34	-7398	626
	S227	1283	1208		S162	-1643	1208	411	S97	-4568	1208	476	S33	-7398	575
	S226	1238	1208	_	S161	-1688	1208	_	S96	-4613	1208	477	S32	-7398	525
		1193	1208	_	S160	-1733	1208		S95	-4658	1208	478	S31	-7398	475
-	S224	1148	1208	_	S159	-1778	1208	_	S94	-4703	1208	479	S30	-7398	425
	S223	1103	1208	_	S158	-1823	1208	_	S93	-4748	1208	480	S29	-7398	375
	-	1058	1208	_	S157	-1868	1208	_	S92	-4793	1208	481	S28	-7398	325
	S221	1013	1208	_	S156	-1913	1208	417	S91	-4838	1208	482	S27	-7398	275
	S220	968	1208	_	S155	-1958	1208		S90	-4883	1208	483	S26	-7398	225
289	S219 S218	923 878	1208 1208		S154 S153	-2003 -2048	1208 1208	419 420		-4928 -4973	1208 1208	484 485	S25 S24	-7398 -7398	175 125
	S218 S217	878	1208		S153 S152	-2048	1208	-	S88 S87	-4973	1208	485	S24 S23	-7398	75
	S217 S216	788	1208	_	S152 S151	-2093	1208	421	S86	-5063	1208	480	S23 S22	-7398	25
292		743	1208	-	S151 S150	-2138	1208	422		-5003	1208	488	S22 S21	-7398	-25
	S213	698	1200	_	S149	-2228	1200	424		-5153	1200	489	S20	-7398	-75
	S213	653	1208	_	S148	-2273	1200	425		-5198	1200	490	S19	-7398	-125
	S212	608	1208	_	S147	-2318	1208	-	S82	-5243	1208	491	S18	-7398	-175
297	S211	563	1208	362	S146	-2363	1208	427	S81	-5288	1208	492		-7398	-225
298	S210	518	1208	363	S145	-2408	1208	428	S80	-5333	1208	493	S16	-7398	-275
299	S209	473	1208	364	S144	-2453	1208	429	S79	-5378	1208	494	S15	-7398	-325
300	S208	428	1208	365	S143	-2498	1208	430	S78	-5423	1208	495	S14	-7398	-375
301	S207	383	1208	366	S142	-2543	1208	431	S77	-5468	1208	496	S13	-7398	-425
	S206	338	1208	367	S141	-2588	1208	-	S76	-5513	1208		S12	-7398	
	S205	293	1208	_	S140	-2633			S75		1208		S11	-7398	-525
	S204	248	1208		S139	-2678			S74	-5603		_	S10	-7398	-575
	S203	203	1208		S138	-2723			S73		1208	500		-7398	-626
	S202	158	1208	_	S137	-2768			S72		1208	501		-7398	-676
	S201	113	1208		S136	-2813		_	S71	-5738		502		-7398	-726
	S200	68	1208		S135	-2858		-	S70	-5783		503		-7398	-776
	S199 S108	23	1208		S134	-2903			S69		1208	504		-7398	-826
	S198 S197	-23 -68	1208 1208		S133 S132	-2948 -2993	1208 1208	_	S68 S67	-5873	1208 1208	505 506		-7398 -7398	-876 -926
	S197 S196	-68 -113	1208		S132 S131	-2993		_	S67 S66	-5918		506		-7398	-926 -976
	S196 S195	-113	1208		S131 S130	-3083		_	S65	-5963		507		-7398	-1026
	S195 S194	-156	1208	_	S130 S129	-3063			S65 S64		1208	500		-1390	-1020
	S194 S193	-203	1208		S129 S128	-3120		_	S63		1208		Cross hairs	-7151	-1161
	S193 S192	-240	1208		S128 S127	-3218		_	S62	-6098		-	Cross hairs	7151	-1161
	S192 S191	-293	1208		S127 S126	-3263			S61	-6188				7 131	1101
	S191 S190	-383	1208		S126 S125	-3203			S60	-6100					
	S180 S189	-303	1208		S123 S124	-3353		_	S59		1208				
	S189 S188	-420	1208		S124 S123	-3398		_	S58	-6330					
	S187	-518	1200		S123	-3443		_	S57		1200				
	S186	-563	1200		S122 S121	-3488			S56	-6450		-			
	S185	-608	1200		S120	-3533			S55		1208	1			
	S184	-653	1200		S119	-3578		_	S54	-6571	1208	-			
	S183	-698	1208		S118	-3623		_	S53	-6631	1208				

Rev.1.1 / April 2002

No.110

42pins 50ump

No.153

Rev.1.1 / April 2002

_								-	oordinate (La			_	2001.2.28 F		
0.	padname	Х	Y	No.	padname	Х	Y	No.	padname	Х	Y	No.	padname	X	Y
1	DUMMY1	-7398	-1208	66	DDVDH	1326	-1208	131	S376	7283	-25	196	S312	5108	10
2	RESET1*	-6931	-1208	67	DDVDH	1426	-1208	132	S375	7398	25	197	S311	5063	12
3	DISPTMG	-6780	-1208	68	VDH	1576	-1208	133	S374	7283	75	198	S310	5018	10
4	CL1	-6630	-1208	69	VDH	1676	-1208	134	S373	7398	125	199	S309	4973	12
5	FLM	-6480	-1208	70	VDH	1776	-1208	135	S372	7283	175	200	S308	4928	10
-	М	-6330	-1208	71	VDH	1877	-1208	136		7398	225	201	S307	4883	12
_	EQ	-6180	-1208		VGS	2027	-1208	137	S370	7283	275	-	S306	4838	10
_	GDA	-6030	-1208	_	VGS	2127	-1208	138		7398	325		S305	4793.	12
_				-								_			
_	GCS*	-5880	-1208	_	V0	2277	-1208	139		7283	375	204		4748	1
	GCL	-5730	-1208		V1P	2427	-1208	140		7398	425	205		4703	1:
11	DCCLK	-5579	-1208	76	V1N	2577	-1208	141	S366	7283	475	206	S302	4658	1
12	VCCDUM1	-5429	-1208	77	V3P	2727	-1208	142	S365	7398	525	207	S301	4613	1
13	IM0/ID	-5329	-1208	78	V3N	2877	-1208	143	S364	7283	575	208	S300	4568.	1
14	GNDDUM1	-5229	-1208	79	V60P	3027	-1208	144	S363	7398	626	209	S299	4523'	1
15	IM1	-5129	-1208	80	V60N	3178	-1208	145	S362	7283	676	210	S298	4478	1
_	VCCDUM2	-5029	-1208		V62P	3328	-1208	146		7398	726	211		4433	1
-	IM2	-4929	-1208		V62N	3478	-1208	147		7283	776		S296	4388	1
_				_				-							
_	GNDDUM2	-4829	-1208	_	V63P	3628	-1208	148		7398	826	_	S295	4343.	1
	TEST	-4729	-1208	_	V63N	3778	-1208	149		7283	876	214		4298	1
-	OSC1	-4579	-1208	85	V8	3928	-1208	150		7398	926	_	S293	4253.	1
21	OSC2	-4429	-1208	86	V20	4028	-1208	151	S356	7283	976	216	S292	4208	1
22	DB15	-4278	-1208	87	V43	4128	-1208	152	S355	7398	1026	217	S291	4163	1
23	DB14	-4128	-1208	88	V55	4228	-1208	153	DUMMY3	7398	1208	218	S290	4118	1
_	DB13	-3978	-1208	_	VTEST	4328	-1208	154		7232	1093	_	S289	4073	1
	DB12	-3828	-1208		VCOM	4479	-1208	155		7172	1208	_	S288	4028	1
-		-3678	-1208			4579	-1208	-				_	S287		1
_	DB11				VCOM			156		7112	1093	221		3983	
_	DB10	-3528	-1208	_	DCCLK	4729	-1208	157	S351	7052	1208	222	S286	3938	1
_	DB9	-3378	-1208		GCL	4879	-1208	158		6991	1093	223		3893	1
29	DB8	-3228	-1208	94	GCS*	5029	-1208	159		6931	1208	224	S284	3848	1
30	GNDDUM3	-3077	-1208	95	GDA	5179	-1208	160	S348	6871	1093	225	S283	3803	1
31	DB7	-2927	-1208	96	EQ	5329	-1208	161	S347	6811	1208	226	S282	3758'	1
32	DB6	-2777	-1208	97	М	5479	-1208	162	S346	6751	1093	227	S281	3713	1
_	DB5	-2627	-1208		FLM	5630	-1208	163		6691	1208	228		3668	1
	DB4	-2477	-1208		CL1	5780	-1208	_	S344	6631	1093	229		3623	1
_	DB3	-2327	-1208	_	DISPTMG	5930	-1208	_			1208	-		· · · ·	1
-								165		6571		230		3578-	
_	DB2	-2177	-1208	_	RESET2*	6080	-1208	166		6510	1093	231	S277	3533	1
_	DB1/SDO	-2027	-1208	_	TS0	6230	-1208	167	S341	6450	1208	232		3488.	1
38	DB0/SDI	-1877	-1208	103	TS1	6330	-1208	168	S340	6390	1093	233	S275	3443'	1
39	RW/RD*	-1726	-1208	104	TS2	6430	-1208	169	S339	6330	1208	234	S274	3398	1
40	E/WR*/SCL	-1576	-1208	105	TS3	6530	-1208	170	S338	6278	1093	235	S273	3353	1
41	RS	-1426	-1208	106	TS4	6630	-1208	171	S337	6233	1208	236	S272	3308	1
42	CS*	-1276	-1208	107	TS5	6730	-1208	172		6188	1093	237	S271	3263	1
43	TEST1	-1126	-1208		TS6	6830	-1208	173		6143	1208	238		3218	1
-	GND	-1120	-1208		TS7	6931	-1208	-	S334	6098	1093	230		3173	1
_			-1208		-			-				_			
45	GND	-876		-	DUMMY2	7398	-1208	175		6053	1208	240		3128	1
_	GND	-776	-1208		S396	7283	-1026	176		6008	1093	241	S267	3083	1
	GND	-676	-1208		S395	7398	-976	177		5963	1208	242		3038	1
_	GND	-575	-1208		S394	7283	-926		S330	5918	1093		S265	2993	1
49	GND	-475	-1208	114	S393	7398	-876	179	S329	5873	1208	244	S264	2948	1
50	GND	-375	-1208	115	S392	7283	-826	180	S328	5828	1093	245	S263	2903'	1
-	GND	-275	-1208		S391	7398	-776		S327	5783	1208		S262	2858	1
_	GND	-175	-1208	_	S390	7283	-726	182		5738	1093	247		2813	1
-	GND	-75	-1208	_	S389	7398	-676		S325	5693	1208	_	S260	2768	1
_	VCC	-75	-1208	_		7390	-676		S325 S324	5648	1208		S259	2700	
_				_	S388			_				_			1
_	VCC	175	-1208	_	S387	7398	-575	-	S323	5603	1208		S258	2678	1
-	VCC	275	-1208	_	S386	7283	-525	-	S322	5558	1093		S257	2633.	1
57	VCC	375	-1208	122	S385	7398	-475	187	S321	5513	1208		S256	2588	1
58	VCC	475	-1208	123	S384	7283	-425	188	S320	5468	1093	253	S255	2543	1
-	VCC	575	-1208	124	S383	7398	-375	-	S319	5423	1208	254	S254	2498	1
	VCC	676	-1208	_	S382	7283	-325	-	S318	5378	1093		S253	2453	1
_	DDVDH	826	-1208	_	S381	7398	-325		S317	5333	1208		S255 S252	2408	1
-				_				-				_			
_	DDVDH	926	-1208	_	S380	7283	-225	-	S316	5288	1093		S251	2363	1
	DDVDH	1026	-1208	_	S379	7398	-175		S315	5243	1208		S250	2318,	1
64	DDVDH	1126	-1208	129	S378	7283	-125	194	S314	5198	1093	259	S249	2273 ·	1
	DDVDH	1226	-1208	400	S377	7398	-75	405	S313	5153	1208	200	S248	2228	1

Rev.1.1 / April 2002

				-					cominato d		edinata)	1			
No.	padname	Х	Y	No.	padname	Х	пD00/70 Ү	No.	oordinate (La padname	Aced Cool	unale) Y	No.	padname	Х	Y
261	S247	2183	1208	326		-743		391		-3668	1208	456		-6691	1093
262	S246	2138	1093	327	S181	-788		392	-	-3713	1093	457	S51	-6751	1208
-	S245	2093	1208	328		-833		393		-3758	1208	-	S50	-6811	1093
264	S244	2048	1093	329	S179	-878	1208	394	S114	-3803	1093	459	S49	-6871	1208
265	S243	2003	1208	330	S178	-923	1093	395	S113	-3848	1208	460	S48	-6931	1093
266	S242	1958	1093	331	S177	-968	1208	396	S112	-3893	1093	461	S47	-6991	1208
267	S241	1913	1208	332	S176	-1013	1093	397	S111	-3938	1208	462	S46	-7052	1093
268	S240	1868	1093	333	S175	-1058	1208	398	S110	-3983	1093	463	S45	-7112	1208
269	S239	1823	1208	334	S174	-1103	1093	399	S109	-4028	1208	464	S44	-7172	1093
270	S238	1778	1093	335	S173	-1148	1208	400	S108	-4073	1093	465	S43	-7232	1208
271	S237	1733	1208	336	-	-1193		401		-4118	1208		DUMMY4	-7398	1208
272	S236	1688	1093	337	S171	-1238			S106	-4163	1093	467	S42	-7283	1026
273	S235	1643	1208	338		-1283	1093	403		-4208	1208	468		-7398	976
274	S234	1598	1093	339		-1328		404		-4253	1093	469	S40	-7283	926
275	S233	1553	1208	340	S168	-1373		405		-4298	1208	470	S39	-7398	876
	S232	1508	1093		S167	-1418		406		-4343	1093	471		-7283	826
277 278	S231 S230	1463 1418	1208	342		-1463 -1508	1093	407		-4388 -4433	1208	472		-7398 -7283	776 726
278	S230 S229	1373	1093 1208	343 344	S165 S164	-1508	1208 1093	408		-4433	1093 1208	473 474	S36 S35	-7283 -7398	7 <i>2</i> 0 676
279	S229 S228	13/3	1206	345		-1503	1208	409		-4478	1093	474	S34	-7390 -7283	626
281	S220 S227	1283	1208	346		-1643		410	S97	-4568	1208	476		-7203	575
282	S227 S226	1200	1200	347	S162	-1688		412		-4613	1200	470	S32	-7390	525
283	S225	1193	1208	348		-1733	1200	413		-4658	1208	478		-7398	475
284	S224	1148	1093	349		-1778		414		-4703	1093	479		-7283	425
285	S223	1103	1208	350	S158	-1823	1093	415	S93	-4748	1208	480	S29	-7398	375
286	S222	1058	1093	351	S157	-1868	1208	416	S92	-4793	1093	481	S28	-7283	325
287	S221	1013	1208	352	S156	-1913	1093	417	S91	-4838	1208	482	S27	-7398	275
288	S220	968	1093	353	S155	-1958	1208	418	S90	-4883	1093	483	S26	-7283	225
289	S219	923	1208	354	S154	-2003	1093	419	S89	-4928	1208	484	S25	-7398	175
290	S218	878	1093	355	S153	-2048	1208	420	S88	-4973	1093	485	S24	-7283	125
291	S217	833	1208	356	S152	-2093	1093	421	S87	-5018	1208	486	S23	-7398	75
292	S216	788	1093	357	S151	-2138		422		-5063	1093	487	S22	-7283	25
293	S215	743	1208	358		-2183		423	S85	-5108	1208	488	S21	-7398	-25
	S214	698	1093	359		-2228	1208	424	S84	-5153	1093	489	S20	-7283	-75
295	S213	653	1208	360		-2273		425		-5198	1208	490	S19	-7398	-125
	S212	608	1093	-	S147	-2318		426		-5243	1093	491		-7283	-175
297	S211 S210	563	1208	362	S146	-2363	1093	427	S81	-5288	1208	492	-	-7398 -7283	-225
298		518	1093	363		-2408		428		-5333	1093		S16		-275
299 300	S209 S208	473 428	1208 1093	365	S144 S143	-2453 -2498	1093 1208	429		-5378 -5423	1208 1093	494	S15 S14	-7398 -7283	-325 -375
	S208 S207	420 383	1093	366		-2490	1208	430		-5468	1208		S14	-7203	-375 -425
302	S207 S206	338	1093	367	S142	-2588		432	S76	-5513	1093	497	S12	-7283	-475
303	S205	293	1208	368		-2633		433		-5558	1208	-	S11	-7398	-525
304		248	1093	369		-2678		434		-5603	1093	499	S10	-7283	-575
	S203	203			S138	-2723			S73	-5648		500		-7398	-626
	S202	158	1093		S137	-2768		_	S72	-5693		501		-7283	-676
	S201	113	1208	372	S136	-2813		437	S71	-5738	1208	502		-7398	-726
308	S200	68	1093		S135	-2858	1208	438	S70	-5783	1093	503		-7283	-776
	S199	23	1208		S134	-2903		439	S69	-5828	1208	504		-7398	-826
	S198	-23	1093		S133	-2948		-	S68	-5873		505		-7283	-876
	S197	-68	1208	_	S132	-2993			S67	-5918		506		-7398	-926
	S196	-113		_	S131	-3038			S66	-5963		507		-7283	-976
	S195	-158	1208		S130	-3083		_	S65	-6008		508	S1	-7398	-1026
	S194	-203	1093	_	S129	-3128			S64	-6053			-		
	S193	-248	1208		S128	-3173			S63	-6098			Cross hairs	-7151	-1161
	S192	-293	1093		S127	-3218		-	S62	-6143				7151	-1161
	S191	-338	1208	_	S126	-3263		447		-6188					
	S190	-383	1093	_	S125	-3308		_	S60	-6233					
	S189	-428	1208		S124	-3353		-	S59	-6278		-			
	S188	-473	1093		S123	-3398		-	S58	-6330					
	S187	-518	1208	_	S122	-3443		-	S57	-6390					
	S186 S185	-563 -608	1093 1208	_	S121	-3488 -3533			S56 S55	-6450 -6510					
	S185 S184	-608 -653		_	S120 S119			_	500 S54						
	S184 S183	-653 -698		-	S119 S118	-3578 -3623		-	S54 S53	-6571 -6631	1093 1208				
323	SIM	-090	1200	290	0110	-3023	1093	400	333	-0001	1200				

Block Function Description

System Interface

The HD66770 has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16-bit/8-bit bus, and a serial peripheral (SPI: Serial Peripheral Interface port). The interface mode is selected by the IM2-0 pins.

The HD66770 has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register (RDR). The IR stores index information from the control registers and the GRAM. The WDR temporarily stores data to be written into control registers and the GRAM, and the RDR temporarily stores data read from the GRAM. Data written into the GRAM from the MPU is first written into the WDR and then is automatically written into the GRAM by internal operation. Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and the following data are normal. When a logic operation is performed inside of the HD66770 by using the display data set in the GRAM and the data written from the MPU, the data read through the RDR is used. Accordingly, the MPU does not need to read data twice nor to fetch the read data into the MPU. This enables high-speed processing.

Execution time for instruction excluding oscillation start is 0 clock cycle and instructions can be written in succession.

80-system	n Bus	68-system Bus		
WR*	RD*	R/W	RS	Operations
0	1	0	0	Writes indexes into IR
1	0	1	0	Reads internal status
0	1	0	1	Writes into control registers and GRAM through WDR
1	0	1	1	Reads from GRAM through RDR

Table 2 Register Selection (8/16 Parallel Interface)

Table 3 Register Selection (Serial Peripheral Interface)

Start bytes

R/W Bits	RS Bits	 Operations
0	0	Writes indexes into IR
1	0	Reads internal status
0	1	Writes into control registers and GRAM through WDR
1	1	Reads from GRAM through RDR

Bit Operation

The HD66770 supports the following functions: a write data mask function that selects and writes data into the GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly reduce the processing loads of the MPU graphics software and can rewrite the display data in the GRAM at high speed. For details, see the Graphics Operation Function section.

Address Counter (AC)

The address counter (AC) assigns address to the GRAM. When an address set instruction is written into the IR, the address information is sent from the IR to the AC.

After writing into the GRAM, the AC is automatically incremented by 1 (or decremented by 1). After reading from the data, the AC is not updated. A window address function allows for data to be written only to a window area specified by GRAM.

Graphics RAM (GRAM)

The graphics RAM (GRAM) has 16 bits/pixel and stores the bit-pattern data of 132 x 176 bytes.

Grayscale Voltage Generator

The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in the grayscale gamma-adjusting resistor. 65,536 possible colors can be displayed at the same time. For details, see the gamma-adjusting resistor.

Timing Generator

The timing generator generates timing signals for the operation of internal circuits such as the GRAM. The RAM read timing for display and internal operation timing by MPU access are generated separately to avoid interference with one another. The timing generator generates the interface signals (M, FLM, CL1, EQ, DCCLK, DISPTMG) for the gate driver and The power supply IC.

Oscillation Circuit (OSC)

The HD66770 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally. Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the Oscillation Circuit section.

Liquid Crystal Display Driver Circuit

The liquid crystal display driver circuit consists of 396 source drivers (S1 to S396).

Display pattern data is latched when 396-bit data has arrived. The latched data then enables the source drivers to generate drive waveform outputs. The shift direction of 396-bit data can be changed by the SS bit by selecting an appropriate direction for the device-mounting configuration.

Interface with Gate Driver

A serial interface circuit provides an interface with the HD66771 and HD667P00. When sending an instruction setting from the HD66770 to the HD66771 and HD667P00, a register setting value from within the HD66770 is transferred via the serial interface circuit. A transfer is started by setting a serial transfer enable of the HD66770. However, transfer to and reading from the HD66771 or HD667P00 is not possible during standby. For details, see the Gate Serial Transfer section

Rev.1.1 / April 2002

S/G	i pin	S1	S2	S3	S4	S5	S6	S7	S8	S9	S10	S11	S12				S385	S386	S387	S388	S389	S390	S391	S392	S393	S394	S395	S396
GS=0	GS=1	DB 11		DB 0	DB. 11	•••	DB 0	DB 11	• • • •	DE	3 DB 11	••••	DB 0	1			DB 11		DB 0	B DB DE DE 11 0			DE 11		. DE	DB 11		DB 0
G1	G176	"0(000'	'H	"00	01"	Η	"0	002	"Н	"00	03"	Η		• • • •	• • • •	"0(080'	'H	"00	081	"Н	"0	082	<u>:"Н</u>	"00)83"H	1
G2	G175	"01	100"	Н	"01	01"	Η	"0	102	"Н	"0103"H				• • • •		"0 [.]	180'	'H	"01	181	"Н				"01		
G3	G174	"02	200'	'H	"02	201"	Н	"0202"H			"0203"H				• • • •	• • • •	"02	280'	'H	"0:	<u>281</u>	"Н	"0	282	<u>:"Н</u>	"0	283"H	4
G4	G173	"0;	300'	'H	"03	"0301"H		"0	302	"Н	"03	03"	Н		• • • •	• • • •	"0380"H			"0381"H			"0382"H			"03	383"H	ł
G5	G172	"04	400'	Ή	"04	"0401"H		"04	402	"Н	"04	03"	Н	• • • •	• • • •	• • •	"0480"H			"0481"H			"0	482	:"H	"04	483"⊦	1
G6	G171	"0	500'	'H	"05	'0501 H		"0	502'	"H	"05	03"	Н			• • • •	"0	580'	'H	"05	581	Н	"0	582	"Н	"05	583"H	1
G7	G170	"06	500"	Н	"06	"0601"H		"0	602	"Н	"06	03"	Н		• • • •	• • • •	"06	<u>580'</u>	'H	"06	681	"Н	"0	682	:"H	"06	583"H	1
G8	G169	"0	700'	'H	"0701"H		"0	702	"Н	"07	03"	Н		• • • •	• • • •	"0	780'	'H	"07	781	"Н	"0	782	:"H	"07	783"H	1	
G9	G168	"0	800'	'H	"08	01"	Н	"0	802	"Н	"08	03"	Н		• • • •	• • •	"08	380'	'H	"0	881	"Н	"0	882	<u>:"Н</u>	"0	883"⊦	4
G10	G167	"0	900'	'H	"09	01"	Η	"0	902	"Η	"09	03"	Н	• • • •	• • • •	• • •	"0	980'	Ή	"09	981	"Н	"0	982	<u>:"Н</u>	"09	83"H	I
G11	G166	"0/	400'	'H	"0A	.01"	Н	"0	A02	"Н	"0A	\03'	Ή				"O/	480'	'H	"0/	<u> </u>	"Н		A82		"0	483"H	-
G12	G165	"OE	300'	'H	"0B	01"	Н	"0	B02	"Н	"OE	303'	'H		• • • •	• • • •	"OE	380'	'H	"0E	381	"Н	"0	B82	<u>2"H</u>	"0E	883"H	Í
G13	G164	"00	C00'	'H	"0C	:01'	Ή	"0	C02	"H	"0C03"H				• • • •	• • •	"0C80"H			"0C81"H			l "0C82"H			"0C83"H		
G14	G163	"0[D00'	'H	"0D	01"	Ή	"0	D02	"H	"OE	003'	"H	• • • •	• • • •	• • •	"0[D80	"H	"0D	081	"Н	"0	D82	2"H	"0E)83"H	1
G15	G162	"0	E00	"Н	"0E	01	'H	"0	E02	2"H	"OE	03	"Н	• • • •		• • •	"0	E80	"Н	"OF	E81	"H	"0	E82	2"H	"OE	83"H	1
G16	G161	"0	F00'	'H	"0F	01'	Ή	"0	F02	"H	"OF	-03'	Ή			"0F80"H		"0F81"H		"H	1		<u>2"H</u>	"OF	- 83"H			
G17	G160	"1(000'	'H	"10	01"	Ή	"1	002	"Н	"10)03'	H,	• • • •	• • • •	••••	"1(080'	'H	"1(081	"H	"1	082	<u>2"H</u>	"10)83"H	I
G18	G159	"1 ⁻	100"	Ή	"11	01"	Н	"1	102	"Н	"11	03"	H			• • • •	"1 <i>`</i>	180'	'H	"11	181	"Н	"1	182	2"H	"11	183"H	1
G19	G158	"1:	200'	'H	"12	:01"	Η	"1	202	"Н	"12	203'	Ή		• • • •	• • • •	"12	280'	Ή	"1:	281	"H	"1	282	2"H	"1:	<u>283"</u> ⊦	1
G20	G157	"1:	300'	'H	"13	01"	Ή	"1	302	"Н	"13	303'	Ή		• • • •	• • • •	"1:	380'	'H	"13	381	"Н	"1	382	2"H	"13	383"H	1
G169	G8	"A	800	"H	"A8	301'	'H	"A	802	"Н	"A	803	"H		• • • •		"A	880	"Н	"A	881	"H	"A	882	<u>2"H</u>	"A	883"H	
G170	G7	"A	900	"Η	"AS	901'	'H	"A	902	"Н	"A	903	"Н				"A	980	"Н	"A	981	"Н	"A	982	2"H)83"H	
G171	G6	"A	A00	"Η	"AA	\01'	'H	"A/	402	"Н	1	403					"A/	480'	'H	"A	A8′	1"H	"A	A82	2"H	"A	483"H	4
G172	G5	"A	B00	"Н	"AE	301'	'H	"Al	302	"Н		303						380'		"A	<u>B8</u> ′	1"H	"A	<u>B8</u> 2	2"H	"A	383"H	-1
G173	G4	"A	C00	"Н	"AC01"H		Ή.	"A("AB02"H "AC02"H		"A(C03	"Н		• • • •	•••	"A(280	0"H "AC81"H							C83"H	-1	
G174	G3	"A	D00	"Н	"ΑΓ	001	"Н	"Al	202	"Н	"Al	D03	"Н					080			D8′				2"H)83"H	I
G175	G2	"A	E00	"H		E01			E02			E03						E80			E8			AE8			83"H	1
G176	G1	"A	F00	"Н	"AF	-01	"H	"A	F02	"H	"A	F03	:"Н				"A	F80'	"Н	"A	F8′	1"H		\F8		"A	F83"H	4

Table 4: Relationship between GRAM address and display position (SS = "0")

Table 5: Relationship between GRAM address and output pin

	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	
GRAM data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RGB allotment			R						G			В					
output pin		S(3n+1)											S	S(3n+3	3)		

Rev.1.1 / April 2002

S/G pir	n	S1 S2 S3	S4 S5 S6				S385 S386 S387	S388 S389 S390	S391 S392 S393	
GS=0	GS=1	DB. DB 0 11	DB. DB	DB DB 11	DB DE 0		DB. DB	DB. DB	DB. DB	DBDB
G1	G176	"0083"H	"0082"H	"0081"H	"0080"H		"0003"H	"0002"H	"0001"H	"0000"H
G2	G175	"0183"H	"0182"H	"0181"H	"0180"H		"0103"H	"0102"H	"0101"H	"0100"H
G3	G174	"0283"H	"0282"H	"0281"H	"0280"H		"0203"H	"0202"H	"0201"H	"0200"H
G4	G173	"0383"H	"0382"H	"0381"H	"0380"H		"0303"H	"0302"H	"0301"H	"0300"H
G5	G172	"0483"H	"0482"H	"0481"H	"0480"H		"0403"H	"0402"H	"0401"H	"0400"H
G6	G171	"0583"H	"0582"H	"0581 H	"0580"H		"0503"H	"0502"H	"0501 H	"0500"H
G7	G170	"0683"H	"0682"H	"0681"H	"0680"H		"0603"H	"0602"H	"0601"H	"0600"H
G8	G169	"0783"H	"0782"H	"0781"H	"0780"H		"0703"H	"0702"H	"0701"H	"0700"H
G9	G168	"0883"H	"0882"H	"0881"H	"0880"H		"0803"H	"0802"H	"0801"H	"0800"H
G10	G167	"0983"H	"0982"H	"0981"H	"0980"H		"0903"H	"0902"H	"0901"H	"0900"H
G11	G166	"0A83"H	"0A82"H	"0A81"H	"0A80"H		"0A03"H	"0A02"H	"0A01"H	"0A00"H
G12	G165	"0B83"H	"0B82"H	"0B81"H	"0B80"H		"0B03"H	"0B02"H	"0B01"H	"0B00"H
G13	G164	"0C83"H	"0C82"H	"0C81"H	"0C80"H		"0C03"H	"0C02"H	"0C01"H	"0C00"H
G14	G163	"0D83"H	"0D82"H	"0D81"H	"0D80"H		"0D03"H	"0D02"H	"0D01"H	"0D00"H
G15	G162	"0E83"H	"0E82"H	"0E81"H	"0E80"H		"0E03"H	"0E02"H	"0E01"H	"0E00"H
G16	G161	"0F83"H	"0F82"H	"0F81"H	"0F80"H		"0F03"H	"0F02"H	"0F01"H	"0F00"H
G17	G160	"1083"H	"1082"H	"1081"H	"1080"H		"1003"H	"1002"H	"1001"H	"1000"H
G18	G159	"1183"H	"1182"H	"1181"H	"1180"H		"1103"H	"1102"H	"1101"H	"1100"H
G19	G158	"1283"H	"1282"H	"1281"H	"1280"H		"1203"H	"1202"H	"1201"H	"1200"H
G20	G157	"1383"H	"1382"H	"1381"H	"1380"H		"1303"H	"1302"H	"1301"H	"1300"H
G169	G8	"A883"H	"A882"H	"A881"H	"A880"H		"A803"H	"A802"H	"A801"H	"A800"H
G170	G7	"A983"H	"A982"H	"A981"H	"A980"H		"A903"H	"A902"H	"A901"H	"A900"H
G171	G6	"AA83"H	"AA82"H	"AA81"H	"AA80"H		"AA03"H	"AA02"H	"AA01"H	"AA00"H
G172	G5	"AB83"H	"AB82"H	"AB81"H	"AB80"H		"AB03"H	"AB02"H	"AB01"H	"AB00"H
G173	G4	"AC83"H	"AC82"H	"AC81"H	"AC80"H	•••••	"AC03"H	"AC02"H	"AC01"H	"AC00"H
G174	G3	"AD83"H	"AD82"H	"AD81"H	"AD80"H		"AD03"H	"AD02"H	"AD01"H	"AD00"H
G175	G2	"AE83"H	"AE82"H	"AE81"H	"AE80"H		"AE03"H	"AE02"H	"AE01"H	"AE00"H
G176	G1	"AF83"H	"AF82"H	"AF81"H	"AF80"H		"AF03"H	"AF02"H	"AF01"H	"AF00"H

Table 6: Relationship between GRAM address and display position (SS = "1")_____

Table 7: Relationship between GRAM address and output pin

	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB
GRAM data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RGB allotment			R						G					В		
output pin		S(396-3	ßn)				S(39	5-3n)				S(394-3	in)	

Instructions

Outline

The HD66770 uses the 16-bit bus architecture. Before the internal operation of the HD66770 starts, control information is temporarily stored in the registers described below to allow high-speed interfacing with a high-performance microcomputer. The internal operation of the HD66770 is determined by signals sent from the microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the data bus signals (DB15 to DB0), make up the HD66770 instructions.

There are nine categories of instructions that:

- Specify the index
- Read the status
- Control the display
- Control power management
- Process the graphics data
- Set internal GRAM addresses
- Transfer data to and from the internal GRAM
- Set grayscale level for the internal grayscale gamma adjustment
- Interface with the gate driver and Power supply IC

Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after each data write can lighten the microcomputer program load. Because instructions are executed in 0 cycles, they can be written in succession.

Instruction Descriptions

Index

The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in the range of 00000 to 111111 in binary form. However, R40 to R44 are disabled since they are test registers.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0

Figure 4 Index Instruction

Status Read

The status read instruction reads the internal status of the HD66770.

L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R	0	L7	L6	L5	L4	L3	L2	L1	L0	0	0	0	0	0	0	0	0

Figure 5 Status Read Instruction

Start Oscillation (R00h)

The start oscillation instruction restarts the oscillator from the halt state in the standby mode. After issuing this instruction, wait at least 10 ms for oscillation to stabilize before issuing the next instruction. (See the Standby Mode section.)

If this register is read forcibly, *0770H is read.

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	*	*	*	*	*	*	*	*	*	*	*	*	*	*	*	1
R	1	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0

Figure 6 Start Oscillation Instruction

Driver Output Control (R01h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	GS	ss	0	0	0	NL4	NL3	NL2	NL1	NL0

Figure 7 Driver Output Control Instruction

GS: Selects the output shift direction of the gate driver. When GS = 0, G1 shifts to G228. When GS = 1, G228 shifts to G1

SS: Selects the output shift direction of the source driver. When SS = 0, S1 shifts to S396. When SS = 1, S396 shifts to S1. When SS = 0, $\langle R \rangle \langle G \rangle \langle B \rangle$ color is assigned from S1. When SS = 1, $\langle R \rangle \langle G \rangle \langle B \rangle$ color is assigned from S396. Re-write to the RAM when intending to change the SS bit.

- Note: The GS bit is for setting the gate driver. Control according to the bit's value is executed by the gate driver. For details, see the data sheet for the gate driver.
- NL4–0: Specify number of lines for the LCD drive. Number of lines for the LCD drive can be adjusted for every eight raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio. Select the set value for the panel size or higher.

NL4	NL3	NL2	NL1	NL0	Display Size	Number of LCD Driver Lines	Gate Driver Used
0	0	0	0	0	Setting disabled	Setting disabled	Setting disabled
0	0	0	0	1	396 x 16 dots	16	G1 to G16
0	0	0	1	0	396 x 24 dots	24	G1 to G24
0	0	0	1	1	396 x 32 dots	32	G1 to G32
0	0	1	0	0	396 x 40 dots	40	G1 to G40
0	0	1	0	1	396 x 48 dots	48	G1 to G48
0	0	1	1	0	396 x 56 dots	56	G1 to G56
0	0	1	1	1	396 x 64 dots	64	G1 to G64
0	1	0	0	0	396 x 72 dots	72	G1 to G72
0	1	0	0	1	396 x 80 dots	80	G1 to G80
0	1	0	1	0	396 x 88 dots	88	G1 to G88
0	1	0	1	1	396 x 96 dots	96	G1 to G96
0	1	1	0	0	396 x 104 dots	104	G1 to G104
0	1	1	0	1	396 x 112 dots	112	G1 to G112
0	1	1	1	0	396 x 120 dots	120	G1 to G120
0	1	1	1	1	396 x 128 dots	128	G1 to G128
1	0	0	0	0	396 x 136 dots	136	G1 to G136
1	0	0	0	1	396 x 144 dots	144	G1 to G144
1	0	0	1	0	396 x 152 dots	152	G1 to G152
1	0	0	1	1	396 x 160 dots	160	G1 to G160
1	0	1	0	0	396 x 168 dots	168	G1 to G168
1	0	1	0	1	396 x 176 dots	176	G1 to G176

Table 8: NL Bits and Drive Duty

Note: Blank period (when all gates output Vgoff level) of 8H period will be inserted to the gates after all gates are scanned.

LCD-Driving-Waveform Control (R02h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NWO

Figure 8 LCD-Driving-Waveform Control Instruction

FLD1-0: Set number of the field that the n field inter-laced driving. For details, see the "Inter-laced" drive section.

FLD1	FLD0	Number of field
0	0	Setting disabled
0	1	1 field
1	0	Setting disabled
	1	1 3 field

Table 9

B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1, a n raster-row waveform is generated and alternates in each raster-row specified by bits EOR and NW5–NW0 in the LCD-driving-waveform control register. For details, see the n-raster-row Reversed AC Drive section.

EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the n-raster-row reversed signals are EORed for alternating drive. EOR is used when the LCD is not alternated by combining the set values of the number of the LCD drive raster-row and the n raster-row. For details, see the n-raster-row Reversed AC Drive section.

NW5–0: Specify the number of raster-rows n that will alternate at the C-pattern waveform setting (B/C = 1). NW5–NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.

Note: FLD1-0 bits are for the gate driver. Control according to the bits' value executed by the gate driver. For details, see the data sheet for the gate driver.

Power Control 1 (R03h)

Power Control 2 (R04h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	SAP2	SAP1	SAP0	BT2	BT1	вто	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB
w	1	CAD	0	0	VRN4	VRN3	VRN2	VRN1	VRN0	0	0	0	VRP4	VRP3	VRP2	VRP1	VRP0

Figure 9 Power Control Instruction

SAP2-0: The amount of fixed current from the operational amplifier for the source driver is adjusted. When the amount of fixed current is large, LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when SAP2-0 = "000", the current consumption can be reduced by halting the operational amplifier and step-up circuit operation.

SAP2	SAP1	SAP0	Op-amp Current	SAP2	SAP1	SAP0	Op-amp Current
0	0	0	Halt op-amp	1	0	0	Medium/large
0	0	1	Small	1	0	1	Large
0	1	0	Small/medium	1	1	0	Setting disabled
0	1	1	Medium	1	1	1	Setting disabled
	Ta	ble 10			Table	e 11	

BT2–0: The output factor of step-up circuit is selected. Adjust scale factor of the step-up circuit by the voltage used. Lower amplification of the step-up circuit consumes less current.

DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high, but the current consumption is increased. Adjust the frequency considering the display quality and the current consumption.

AP2–0: The amount of fixed current from operational amplifier for the power supply is adjusted. When the amount of fixed current is large, the LCD driving ability and the display quality become high, but the current consumption is increased. Adjust the fixed current considering the display quality and the current consumption. During no display, when AP2-0 = "000", the current consumption can be reduced by ending the operational amplifier and step-up circuit operation.

SLP: When SLP = 1, the HD66770 enters the sleep mode, where the internal display operations are halted except for the R-C oscillator, thus reducing current consumption. Only serial transfer to a gate driver/power-supply IC and the following instructions can be executed during the sleep mode.

Power control: (BT2–0, DC2–0, AP2–0, SLP, STB, VC2-0, CAD, VR3-0, VRL3-0, VRH4-0, VCOMG, VDV4-0, and VCM4-0 bits)

Common interface control: (TE, IDX)

During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained.

STB: When STB = 1, the HD66770 enters the standby mode, where display operation completely stops, halting all the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For details, see the Standby Mode section. Only the following instructions can be executed during the standby mode.

- a. Standby mode cancel (STB = "0")
- b. Start oscillation

During the standby mode, the GRAM data and instructions may be lost. To prevent this, they must be set again after the standby mode is canceled. Serial transfer to the common driver is possible when it is in standby mode. Transfer the data again after it has been released from standby mode.

CAD: Set up based on retention capacitor configuration of the TFT panel.

CAD = "0" Set this up when use Cst composition.

CAD = "1" Set this up when use Cadd composition.

VRP4-0: Control amplitude (positive polarity) of 64-grayscale. For details, see the amplitude adjusting circuit section.

VRN4-0: Control amplitude (negative polarity) of 64-grayscale. For details, see the Amplitude Adjusting Circuit section.

Note: BT2-0, DC2-0, AP2-0, SLP, CAD bits are for Power supply IC. Control according to the bits' values is executed by Power supply IC. For details, see the data sheet for the Power supply IC.

Power Control 3 (R0Ch)

Power Control 4 (R0Dh)

Power Control 5 (R0Eh)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0
w	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0
w	1	0	0	VCO MG	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0

Figure 10

VC2-0: Adjust reference voltage of VREG1OUT, VREG2OUT and VciOUT to optional rate of Vci. Also, when VC2 = "1", it is possible to stop the internal reference voltage generator. This leads to control for VREG1OUT/VciOUT with REGP and VREG2OUT with REGN externally.

VRL3-0: Set magnification of amplification for VREG2OUT voltage (voltage for the reference voltage, VREG2 while generating Vgoff.) It allows to magnify the amplification of REGN from -2 to -8.5 times.

PON: This is an operation starting bit for the booster circuit 3. PON = 0 is to stop and PON = 1 to start operation.

VRH3-0 : Set magnification of amplification for VREGOUT1 voltage(voltage for the reference voltage, VREG1 while generating VDH.) It allows to magnify the amplification of REGP from 1.45 to 2.85 times.

VCOMG: When VCOMG = 1, VcomL voltage can output to negative voltage (-5V).

When VCOMG = 0, VcomL voltage becomes GND and stops the amplifier of the negative voltage. Therefore, low power consumption is accomplished. Also, When VCOMG = 0 and when Vcom is driven in A/C, setting of the VDV4-0 is invalid. In this case, adjustment of Vcom/Vgoff A/C amplitude must be adjusted with VcomH using VCM4-0.

VDV4-0: Sets amplification factors for Vcom and Vgoff while Vcom AC drive is being performed. It is possible to set up from 0.6 to 1.23 times of VREG1. When Vcom is not driven in A/C, the set up is invalid.

VCM4-0: Set VcomH voltage (voltage of higher side when Vcom is driven in A/C.) It is possible to amplify from 0.4 to 0.98 times of VREG1 voltage. Also, when setting up VCM4-0 = 1111, stop the internal volume adjustment and adjust VcomH with external resistance from VcomR.

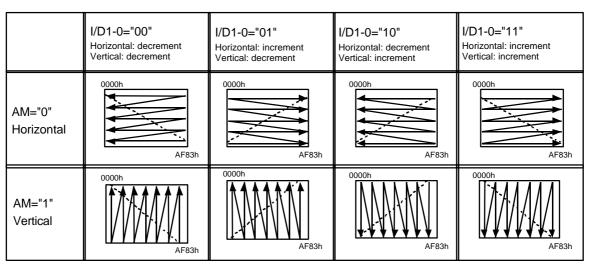
Note: VC2-0, VRL3-0, VRH4-0, VCOMG, VDV4-0, VCM4-0 bits are for Power supply IC. Control according to the bits' values is executed by Power supply IC. For details, see the data sheet for the Power supply IC.

Entry Mode (R05h)

Compare Register (R06h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	нwм	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0
w	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0

Figure 11

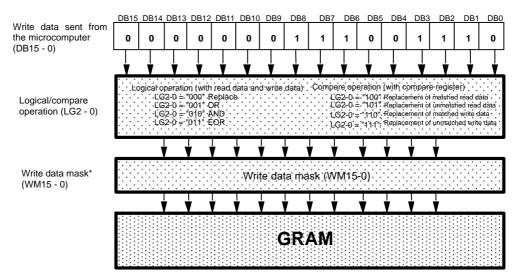

The write date sent from the microcomputer is modified in the HD66770 written to the GRAM. The display data in the GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the Graphics Operation Function section.

HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data are written to the GRAM in a single operation after writing to RAM four times. Write to RAM four times, otherwise the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address. For details, see High Speed RAM Write Mode section.

I/D1-0: When I/D1-0 = 1, the address counter (AC) is automatically incremented by 1 after the data is written to the GRAM. When I/D1-0 = 0, the AC is automatically decremented by 1 after the data is written to the GRAM. The increment/decrement setting of the address counter by I/D1-0 is done independently for the upper (AD15-8) and lower (AD7-0) addresses. The direction of moving through the addresses when the GRAM is written to is set by the AM bit.

AM: Set the automatic update method of the AC after the data is written to the GRAM. When AM = 0, the data is continuously written in parallel. When AM = 1, the data is continuously written vertically. When window address range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM settings.

Rev.1.1 / April 2002



Note: When a window address range has been set the GRAM can only be written to within that range.

Figure 12 Address Direction Settings

LG2–0: Compare the data read from the GRAM by the microcomputer with the compare registers (CP11–0) by a compare/logical operation and write the results to GRAM. For details, see the Logical/Compare Operation Function.

CP15–0: Set the compare register for the compare operation with the data read from the GRAM or written by the microcomputer.

Note: The write data mask (WM11-0) is set by the register in the RAM Write Data Mask section.

Figure 13

Display Control (R07h)

		DB2	DB3	DB4	DB5	DB6	DB7	DB8	DB9	DB10	DB11	DB12	DB13	DB14	DB15	RS	R/W
W 1 0 0 PT1 PT0 VLE2 VLE1 SPT 0 0 GON DTE CL REV D1 D	D1 D0	REV	CL	DTE	GON	0	0	SPT	VLE1	VLE2	РТО	PT1	0	0	o	1	w

Figure 14 Display Control Instruction

PT1-0: Normalize the source outputs when non-displayed area of the partial display is driven. For details, see the Screen-division Driving Function section.

VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1st screen. When VLE2 = 1, a vertical scroll is performed in the 2nd screen. Vertical scrolling on the two screens cannot be controlled at the same time.

VLE2	VLE1	2 nd Screen	1 st Screen
0	0	Fixed display	Fixed display
0	1	Fixed display	Scroll display
1	0	Scroll display	Fixed display
1	1	Setting	disabled
		Table 12	

CL: When CL = 1, number of colors is 8-color mode. For details, see the 8-color Display Mode section.

CL	Number of Display Colors
0	65,536
1	8
,	Table 13

SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function section.

REV: Displays all character and graphics display sections with reversal when REV = 1. Since the grayscale level can be reversed, display of the same data is enabled on normally-white and normally-black panels

			Source output level								
		Display	, oroo			non-dis	play area				
REV	GRAM data	Displa	y alea	PT1-(D=(0.*)	PT1-0	=(1.0)	PT1-0=	=(1.1)		
		VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"		
0	16'h0000 16'hFFFF	V63 V0	V0 V63	V63	V0	GND	GND	Hi-z	Hi-z		
1	16'h0000 16'hFFFF	V0 V63	V63 V0	V63	V0	GND	GND	Hi-z	Hi-z		

i) Combination with the partial display

Figure 15

ii) Combination with the D1-0

					Source	output lev	/el		
REV	GRAM data	D1-0:	=(1.1)	D1-0=	=(1.0)	D1-0:	=(0.1)	D1-0=	=(0.0)
		VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"	VCOM="L"	VCOM="H"
0	16'h0000 16'hFFFF	V63 V0	V0 V63	V63	V0	GND	GND	GND	GND
1	16'h0000 16'hFFFF	V0 V63	V63 V0	V63	V0	GND	GND	GND	GND

Figure 16

GON: Gate off level is GND when GON = 0.

DTE: DISPTMG output is fixed to GND when DTE = 0.

GON	Gate Output	•	DTE	DISPTMG Output
0	Vgon/GND	•	0	Halt (GND)
1	Vgon/Vgoff		1	Operation (Vcc/GND)

Table 14

Table 15

D1–0: Display is on when D1 = 1 and off when D1 = 0. When off, the display data remains in the GRAM, and can be displayed instantly by setting D1 = 1. When D1 is 0, the display is off with all of the source outputs set to the GND level. Because of this, the HD66770 can control the charging current for the LCD with AC driving. Control the display on/off while control GON and DTE. For details, see the Instruction Set Up Flow.

When D1-0 = 01, the internal display of the HD66770 is performed although the display is off. When D1-0 = 00, the internal display operation halts and the display is off.

D1	D0	Source Output	HD66770 Internal Display Operation	Control Signal (CL1, FLM, M)
0	0	GND	Halt	Halt
0	1	GND	Operate	Operate
1	0	Unlit display	Operate	Operate
1	1	Display	Operate	Operate

Table 16D Bits and Operation

Notes: 1. Writing from the microcomputer to the GRAM is independent from the state of D1–0.

2. In the sleep and standby modes, D1-0 = 00. However, the register contents of D1-0 are not modified.

Note: SPT and GON bits are for setting the gate driver. Control according to the bits' values is executed by the gate driver. For details, see the data sheet for the gate driver.

Gate Driver Interface Control (R0Ah)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	0	0	0	0	0	0	0	TE	0	0	0	0	0	IDX2	IDX1	IDX0
R	1	0	0	0	0	0	0	0	TE	0	0	0	0	0	IDX2	IDX1	IDX0

Figure 17 Gate Driver Interface Control Instruction

IDX2-0: Index bits that select instructions for the gate driver/Power supply IC. The instruction that corresponds to the setting of gate driver and power supply IC is transferred, with the index, to the gate driver and the power supply IC via the serial interface. These instructions are transferred in bit rows as shown below. The upper 3 bits correspond to IDX2-0. The IDX2-0 setting at the time of transfer selects the instruction for the gate driver and the power supply IC as listed below.

To change an instruction setting on the gate driver and the power supply IC, first change the instruction bit on the HD66770 at first, then, select the instruction, which includes the changed instruction bit, from the list below, by setting IDX2-0 as required. The instruction is transferred to the gate driver/Power supply IC after TE bit is set to 1, and is executed.

TE: Serial transfer enable for the gate driver/power-supply IC. When 0 is read on TE bit, serial transfer is possible. Do not change the instruction during transfer. When 1 is written to TE bit, transfer starts. TE returning to 0 indicates the end of the transfer. Note that, serial transfer to the gate driver/Power supply IC requires 18 clock cycles at most. Do not change the instruction during the transfer.

* New instructions should be transferred to the gate driver / power supply IC soon after they have been set on the HD66770.

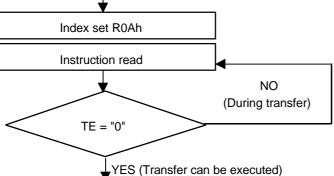
Rev.1.1 / April 2002

IDX2	IDX1	IDX0	DB12	2 DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	*	GON	*	*	*	*	*	*	*	*	*	*	SLP
0	0	1	*	*	*	*	*	*	*	*	*	*	*	*	*
0	1	0	*	*	*	*	*	*	*	*	*	*	*	*	*
0	1	1						Sett	ing dis	abled					
1	0	0						Sett	ing dis	abled					
1	0	1		_				Sett	ing dis	abled					
1	1	0	0	0	GS	NL4	NL3	NL2	NL1	NL0	SCN4	SCN3	SCN2	SCN1	SCN0
1	1	1	0	0	0	0	0	0	0	0	0	0	0	FLD1	FLD0
			* Re	gister f	or HD6	67P00)								

Table 17: the gate driver (HD 66770) instructions

Table 18: Power supply IC (HD667P00) instructions

IDX2	IDX1	IDX0	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
0	0	0	0	GON	vсомg	BT2	BT1	BT0	DC2	DC1	DC	AP2	AP1	AP0	SLP
0	0	1	CAD	VRL3	VRL2	VRL1	VRL0	VRH4	VRH3	VRH2	VRH1	VRH0	VC2	VC1	VC0
0	1	0	0	0	0	VDV4	VDV3	VDV2	VDV1	VDV0	VCM4	VCM3	VCM2	VCM1	VCM0
0	1	1						Setti	ng disa	abled					
1	0	0						Setti	ng disa	abled					
1	0	1		Setting disabled											
1	1	0	*	*	*	*	*	*	*	*	*	*	*	*	*
1	1	1	*	*	*	*	*	*	*	*	*	*	*	*	*
			* Re	gister f	or HD6	6771									


Instruction setting change

Gate driver/ the power supply IC Index (IDX2 to 0)

TE=1 (Transfer start)

Change the instruction bit setting corresponding to the HD66770.

* Transfer to the gate driver/IC chip of the power supply IC must be exercised immediately after setting up the instruction.

Including a changed instruction bit at the head based on the instruction list of HD66771/ power supply IC (HD667P00).

Specify the IDX2 to 0 a changed instruction bit.

Notes: 1. Transfer to the gate driver / IC chip of the power supply must take place immediately after setting up the instruction.

- 2. The serial transfer period takes a maximum of 1/fosc x 18 colck cycles (sec).
- 3. Serial transfer cannot be executed in stand by mode. If the chip enters standby mode during transfer, the serial transfer is forcibly suspended. Transfer must be executed again because correct transfer is not guaranteed in this situation.
- 4. Serial transfer can be forcibly suspended by writing TE = 0. Transfer must be executed again because correct transfer is not guaranteed in this situation.

5. Do not enter standby mode during transfer or forcibly terminate transfer except in case of emergency. Before executing, confirm that the transfer is completed.

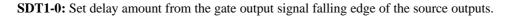
Figure 18 Gate Interface: Serial Transfer Sequence

Frame Cycle Control (R0Bh)

R	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	w	1	NO1	NO0	SDT1	SDT0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0

Figure 19

RTN3-0: Set the 1H period.


DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks which are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the 1H period (RTN3-0). When changing drive line count, adjust the frame frequency. For details, see the Frame Frequency Adjustment Function section.

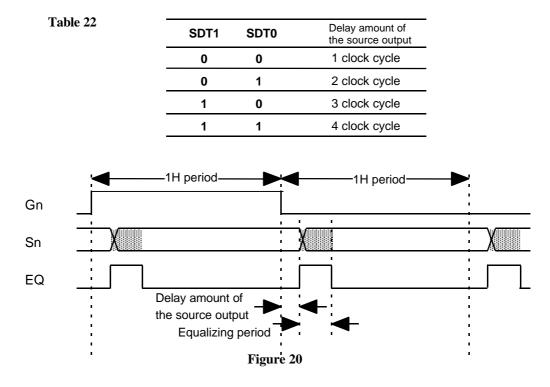
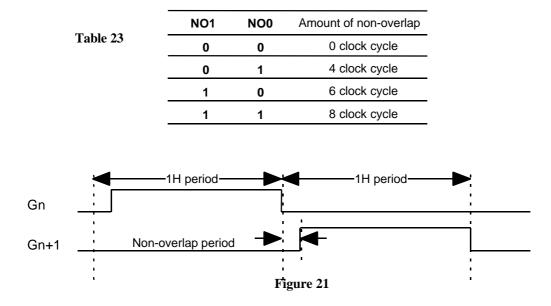

EQ1-0: EQ period can be set with EQ1-0.

Table 19	RTN3 F	rtn2 f	RTN1 RTN0	Clock cycles per Raster-row	
	0	0	0 0	16	
	0	0	0 1	17	
	0	0	1 0	18	
	1	1	1 0	30	
	1	1	1 1	31	
Table 20					
	DIV1	DIV0	Division Ratio	Internal Operation Clock Frequency	
	0	0	1	fosc / 1	
	0	1	2	fosc / 2	
	1	0	4	fosc / 4	
	1	1	8	fosc / 8	
	the fram	frequer		* fosc = R-C oscillation frequen	су
Frame frequen		nequei	loy	fosc	[Hz]
·	-	lock cyc	les per raster-	row x division ratio x (Line +	
	fosc: C	R oscil	lation freque	псу	
	Line: N	lumber	of drive raste	er-row (NL bits)	
	Divisio	n ratio:	DIV bit		
	Clock of	cycles p	per raster-row	/: RTN bits	


Table 21

EQ1	EQ0	EQ period
0	0	No EQ
0	1	1 clock cycle
1	0	2 clock cycle
1	1	3 clock cycle

NO1-0: Set amount of non-overlap for the gate output.

Rev.1.1 / April 2002

Gate Scan Position (R0Fh)

F	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	w	1	0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0

Figure 22

SCN4-0Set the scanning starting position of the gate driver.

					Scanning	start position
SCN4	SCN3	SCN2	2 SCN1	SCN0	When GS=0	When GS=1
0	0	0	0	0	G1	G228
0	0	0	0	1	G9	G220
0	0	0	1	0	G17	G212
Ē					-	
1	1	0	1	0	G209	G20
1	1	0	1	1	G217	G12

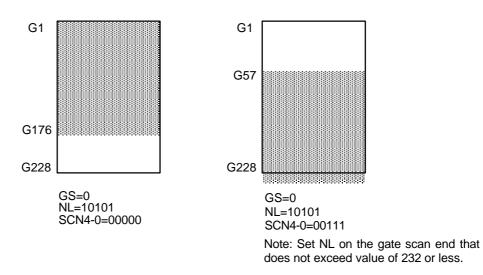


Figure 23: Relationship between NL and SCN set up value

Note: SCN4-0 bits are for setting the gate driver. Control according to the bits' values is executed by the gate driver. For details, see the data sheet for the gate driver.

Rev.1.1 / April 2002

Vertical Scroll Control (R11h)

R	w	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
\	N	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VLO

Figure 24

VL7-0: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 176^{th} can be scrolled for the number of the raster-row. After 176^{th} raster-row is displayed, the display restarts from the first raster-row. The display-start raster-row (VL7-0) is valid when VLE1 = 1 or VLE2 = 1. The raster-row display is fixed when VLE2-1 = 00.

VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Scroll length
0	0	0	0	0	0	0	0	0 raster-row
0	0	0	0	0	0	0	1	1 raster-row
0	0	0	0	0	0	1	0	2 raster-row
				Ē				Ē
1	0	1	0	1	1	1	0	174 raster-row
1	0	1	0	1	1	1	1	175 raster-row
						-		

Note: Do not set any higher raster-row than 175 ("AF"H)

Table 25

1st Screen Driving Position (R14h)

2nd Screen Driving Position (R15h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10
w	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20

Figure 25

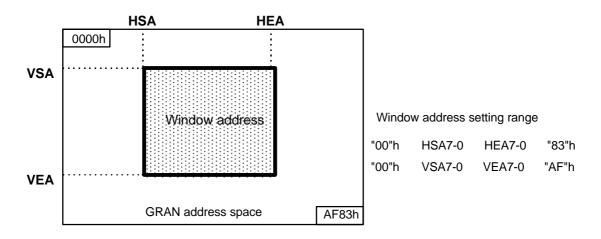
SS17–0: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the 'set value + 1' gate driver.

SE17–0: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set value + 1' gate driver. For instance, when SS17-10 = 07H and SE17-10 = 10H are set, the LCD driving is performed from G8 to G17, and non-selection driving is performed for G1 to G7, G18, and others. Ensure that $SS17-10 \le SE17-10 \le AFH$. For details, see the Screen-division Driving Function section.

SS27–0: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set value + 1' gate driver. The second screen is driven when SPT = 1.

SE27–0: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the 'set value + 1' gate driver. For instance, when SPT = 1, SS27–20 = 20H, and SE27–20 = AFH are set, the LCD driving is performed from G33 to G80. Ensure that SS17–10 \leq SE17–10 \leq SS27–20 \leq SE27–20 \leq AFH. For details, see the Screen-division Driving Function section.

Horizontal RAM Address Position (R16h)


Vertical RAM Address Position (R17h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0
w	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0

Figure 26 Horizontal/Vertical RAM Address Position Instruction

HSA7-0/HEA7-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by HEA7-0 from the address specified by HSA7-0. Note that an address must be set before RAM is written to. Ensure $00h \le HSA7-0 \le HEA7-0 \le 3Fh$.

VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must be set before RAM is written to. Ensure $00h \le VSA7-0 \le VEA7-0 \le AFh$.

Figure 27 Window Address Setting Range

- Note: 1. Ensure that the window address area is within the GRAM address space.
 - In high-speed write mode, data are written to GRAM in four-words. Thus, dummy write operations should be inserted depending on the window address
 - area. For details, see the High-Speed Burst RAM Write Function section.3. Set RAM address within the window address area. In high-speed write mode, set RAM address within the area containing dummy area. For details, see the High-Speed RAM Write Function section.

RAM Write Data Mask (R20h)

L	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			wм	WМ	wм	WМ	WМ	WМ	WМ	WМ	WМ	WМ	WМ	WМ	WМ	wм	WМ	WМ
L	w	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 28 RAM Write Data Mask Instruction

WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks the write data of DB15 and does not write to the GRAM. Similarly, the WM14 to 0 bits mask the write data of DB14 to 0 in a bit unit. For details, see the Graphics Operation Function section.

RAM Address Set (R21h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
w	1	AD15	AD14	AD13	AD12	AD11	AD10	AD9	AD8	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0

Figure 29	RAM	Address	Set	Instruction
-----------	-----	---------	-----	-------------

AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting addresses. Once the GRAM data is read, the AC is not automatically updated. GRAM address setting is not allowed in the standby mode. Ensure that the address is set within the specified window address.

Table 26 GRAM Address Range in Eight-grayscale Mode

AD15 to AD0	GRAM Setting
"0000"H to "0083"H	Bitmap data for G1
"0100"H to "0183"H	Bitmap data for G2
"0200"H to "0283"H	Bitmap data for G3
"0300"H to "0383"H	Bitmap data for G4
"AC00"H to "AC83"H	Bitmap data for G173
	Ditinap data for 0175
"AD00"H to "AD83"H	Bitmap data for G174
"AD00"H to "AD83"H "AE00"H to "AE83"H	I
	Bitmap data for G174

Write Data to GRAM (R22h)

R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
		WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
w	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 30

WD15–0: Write 16-bit data to the GRAM. This data selects the grayscale level. After a write, the address is automatically updated according to the AM and I/D bit settings. During the standby mode, the GRAM cannot be accessed.

	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
GRAM Write Data	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	R4	R3	R2	R1	R0	G5	G4	G3	G2	G1	G0	В4	B3	B2	B1	в0
							•••		!	<u> </u>						
								1	pixel							

Figure	31
--------	----

GRAM Da	ata Set-up R/B	Sele Gray N	cted ⁄scale P	GRAM Da	ita Set-up R/B	Sele Gray N		GRAM Dat G	ta Set-up R/B	Sele Gray N		GRAM Da	ata Set-up R/B		ected /scal P
000000	00000	V0	V63	010000	01000	V16	V47	100000	-	V32	V31	110000	-	V48	V15
000001	-	V1	V62	010001	-	V17	V46	100001	10000	V33	V30	110001	11000	V49	V14
000010	00001	V2	V61	010010	01001	V18	V45	100010	-	V34	V29	110010	-	V50	V13
000011	-	V3	V60	010011	-	V19	V44	100011	10001	V35	V28	110011	11001	V51	V12
000100	00010	V4	V59	010100	01010	V20	V43	100100	-	V36	V27	110100	-	V52	V11
000101	-	V5	V58	010101	-	V21	V42	100101	10010	V37	V26	110101	11010	V53	V10
000110	00011	V6	V57	010110	01011	V22	V41	100110	-	V38	V25	110110	-	V54	V9
000111	-	١/7	V56	010111	-	V23	V40	100111	10011	V39	V24	110111	11011	V55	V8
001000	00100	V8	V55	011000	01100	V24	V39	101000	-	V40	V23	111000	-	V56	V7
001001	-	V9	V54	011001	-	V25	V38	101001	10100	V41	V22	111001	11100	V57	V6
001010	00101	V10	V53	011010	01101	V26	V37	101010	-	V42	V21	111010	-	V58	V5
001011	-	V11	V52	011011	-	V27	V36	101011	10101	V43	V20	111011	11101	V59	V4
001100	00110	V12	V51	011100	01110	V28	V35	101100	-	V44	V19	111100	-	V60	V3
001101	-	V13	V50	011101	-	V29	V34	101101	10110	V45	V18	111101	11110	V61	V2
001110	00111	V14	V49	011110	01111	V30	V33	101110	-	V46	V17	111110	-	V62	V1
001111	-	V15	V48	011111	-	V31	V32	101111	10111	V47	V16	111111	11111	V63	V0

Table 27 GRAM Data and Grayscale Level

Read Data from GRAM (R22h)

Γ	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
			RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD	RD
	к	1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Figure 32 Read Data from GRAM Instruction

RD15–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on the data bus (DB15–0) becomes invalid and the second-word read is normal.

When bit processing, such as a logical operation, is performed within the HD66770, only one read can be processed since the latched data in the first word is used.

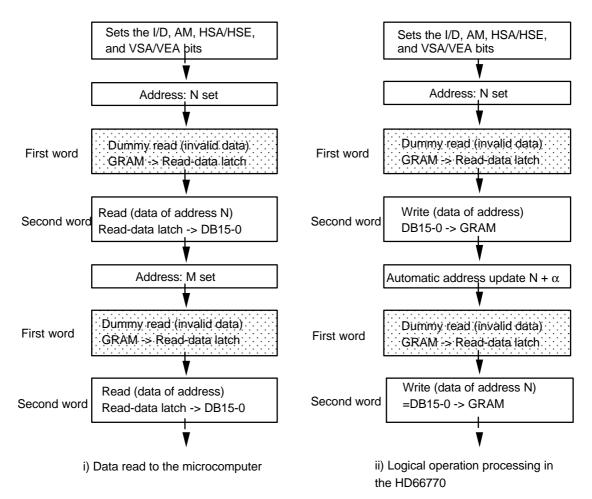


Figure 33 GRAM Read Sequence

	R/W	RS	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
R30	w	1	0	0	0	0	0	РКР 12	РКР 11	РКР 10	0	0	0	0	0	РКР 02	PKP 01	РКР 00
R31	w	1	0	0	0	0	0	PKP 32	РКР 31	PKP 30	0	0	0	0	0	PKP 22	PKP 21	PKP 20
R32	w	1	0	0	0	0	0	PKP 52	PKP 51	PKP 50	0	0	0	0	0	PKP 42	PKP 41	PKP 40
R33	w	1	0	0	0	0	0	PRP 12	PRP 11	PRP 10	0	0	0	0	0	PRP 02	PRP 01	PRP 00
R34	w	1	0	0	0	0	0	PKN 12	PKN 11	РКN 10	0	0	0	0	0	PKN 02	PKN 01	PKN 00
R35	w	1	0	0	0	0	0	PKN 32	PKN	PKN 30	0	0	0	0	0	PKN 22	PKN 21	PKN 20
R36	w	1	0	0	0	0	0	PKN 52	PKN 51	PKN 50	0	0	0	0	0	PKN 42	PKN 41	PKN 40
R37	w	1	0	0	0	0	0	PRN 12	PRN 11	PRN 10	0	0	0	0	0	PRN 02	PRN 01	PRN 00
R3F	w	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	vdr 1	VDR 0
'																		

Gamma Control (R30h to R37h, R3F)

Table 28

PKP52-00: Gamma micro adjustment register for the positive polarity output

PRP12-00: Gradient adjustment register for the positive polarity output

PKN52-00: Gamma micro adjustment register for the negative polarity output

PRN12-00: Gradient adjustment register for the negative polarity output

VDR1-0: Adjustment register for the grayscale reference value.

For details, see the Gamma Adjustment Function.

Instruction List (HD66770)

Rev. 0.4 2001.1	1.19
-----------------	------

_	[Upper Code Lower Code														Rev. 0.4 200				
Reg. No.	Register Name	-																		Description	Execution cycle
		R/W	RS 0	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		0
IR	Index Status and	0	0	L7	L6	L5	L4	L3	L2	 L1	LO	0	ID6 0	1D5 0	1D4 0	1D3 0	1D2 0	ID1 0	1D0 0	Sets the index register value.	0
SR	Status read	0	1	L/ *	L0 *	L5 *	L4 *	L3 *	L2 *	L1 *	±0	*	*	*	*	*	*	*	1	Reads the driving raster-row position (L7-0).	10 ms
R00h	Start oscillation Device code read	1	1	0	0	0	0	0	1	1	1	0	1	1	1	0	0	0	0	Starts the oscillation mode. Reads 0770H.	0
R01h	Driver output control	0	1	0	0	0	0	0	0	GS	SS	0	0	0	NL4	NL3	NL2	NL1	NL0	Sets the gate driver shift direction (GS), source driver shift direction (SS), and number of driving lines (NL4-0).	, 0
R02h	LCD-driving- waveform control	0	1	0	0	0	0	FLD1	FLD0	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NW1	NW0	Sets the LCD drive AC waveform (B/C), number of interlaced field (FLD1- 0), EOR output (EOR), and the number of n-raster-rows (NW5-0) at C- pattern AC drive.	
R03h	Power control 1	0	1	0	0	SAP2	SAP1	SAP0	BT2	BT1	BT0	DC2	DC1	DC0	AP2	AP1	AP0	SLP	STB	Sets the standby mode (STB), LCD power on (AP1-0), sleep mode (SLP), boosting cycle (DC2-0), boosting output multiplying factor (BT3-0), and source op-amp on (SAP2-0).	
R04h	Power control 2	0	1	CAD	0	0	VRN4	VRN3	VRN2	VRN1	VRN0	0	0	0	VRP4	VRP3	VRP2	VRP1	VRP0	Sets the grayscale adjusting generator (VRN4-0, VRP4-0) and configuration of retention volume (CAD).	0
R05h	Entry mode	0	1	0	0	0	0	0	0	нwм	0	0	0	I/D1	I/D0	AM	LG2	LG1	LG0	Specifies the logical operation (LG2-0), AC counter mode (AM), increment/decrement mode (I/D1-0) and high-speed-write mode (HWM).	0
R06h	Compare register	0	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	Sets the compare register (CP15-0).	0
R07h	Display control	0	1	0	0	0	PT1	PT0	VLE2	VLE1	SPT	0	0	GON	DTE	CL	REV	D1	D0	Specifies display on (D1-0), reversed display (REV), number of display colors (CL), DISPTMG enable (DTE), gate output on (GON), screen division driving (SPT), and vertical scroll (VLE2-1) and source output condition (PT1-0).	0
DOAL	COM driver	0	1	0	0	0	0	0	0	0	TE	0	0	0	0	0	IDX2	IDX1	IDX0	Specifies the serial transfer enable (TE) and index for the power supply	, 0
R0Ah	interface control	1	1	0	0	0	0	0	0	0	TE	0	0	0	0	0	IDX2	IDX1	IDX0	transfer instructions (IDX2-0).	0
R0Bh	Frame cycle control	0	1	NO1	NO0	STD1	STD0	EQ1	EQ0	DIV1	DIV0	0	0	0	0	RTN3	RTN2	RTN1	RTN0	Sets the 1H period (RTN3-0) and operating clock frequency-division ratio (DIV1-0), the equalizing period (EQ1-0), delay volume of the source output (STD1-0), non-overlap volume of the gate output (NO1-0).	
R0Ch	Power control 3	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VC1	VC0	Sets an adjustment factor for the Vci voltage (VC2-0).	0
R0Dh	Power control 4	0	1	0	0	0	0	VRL3	VRL2	VRL1	VRL0	0	0	0	PON	VRH3	VRH2	VRH1	VRH0	Sets the amplification factor for VREGOUT1 voltage (VRH4-0) and for VREGOUT2 voltage (VRL3-0).	r O
R0Eh	Power control 5	0	1	0	0	VCOM G	VDV4	VDV3	VDV2	VDV1	VDV0	0	0	0	VCM4	VCM3	VCM2	VCM1	VCM0	Sets VcomH voltage (VCM4-0), AC-cycle oscillation of Vcom and Vgoft (VDV3-0) and voltage of VCOM (VCOMG)	f 0
R0Fh	Gate scanning starting position	0	1	0	0	0	0	0	0	0	0	0	0	0	SCN4	SCN3	SCN2	SCN1	SCN0	Sets the scanning starting position (SCN4-0) of the gate driver.	0
R11h	Vertical scroll control	0	1	0	0	0	0	0	0	0	0	VL7	VL6	VL5	VL4	VL3	VL2	VL1	VL0	Specifies the screen display scroll volume (VL7-0).	0
R14h	1st screen driving position	0	1	SE17	SE16	SE15	SE14	SE13	SE12	SE11	SE10	SS17	SS16	SS15	SS14	SS13	SS12	SS11	SS10	Sets 1st-screen driving start (SS17-10) and end (SE17-10).	0
R15h	2nd screen driving position	0	1	SE27	SE26	SE25	SE24	SE23	SE22	SE21	SE20	SS27	SS26	SS25	SS24	SS23	SS22	SS21	SS20	Sets 2nd-screen driving start (SS27-20) and end (SE27-20).	0
R16h	Horizontal RAM address position	0	1	HEA7	HEA6	HEA5	HEA4	HEA3	HEA2	HEA1	HEA0	HSA7	HSA6	HSA5	HSA4	HSA3	HSA2	HSA1	HSA0	Sets the start (HSA7-0) and end (HEA7-0) of the horizontal RAM address range.	⁵ 0
R17h	Vertical RAM address position	0	1	VEA7	VEA6	VEA5	VEA4	VEA3	VEA2	VEA1	VEA0	VSA7	VSA6	VSA5	VSA4	VSA3	VSA2	VSA1	VSA0	Sets the start (VSA7-0) and end (VEA7-0) of the vertical RAM address range.	³ 0
R20h	RAM write data mask	0	1	WM15	WM14	WM13	WM12	WM11	WM10	WM9	WM8	WM7	WM6	WM5	WM4	WM3	WM2	WM1	WM0	Specifies write data mask (WM15-0) at RAM write.	0
R21h	RAM address set	0 1 AD15-8 (upper)							AD7-0 (lower)								Initially sets the RAM address to the address counter (AC).	0			
R22h	Write data to RAM							Write Data (lower)								Write data to RAM.					
RZZN	Write data from RAM	1	1			Re	ead Da	ata (upp	er)					R	ead Da	ata (low	er)			Read data from RAM.	0

HD66770 Rev.1.1

R30h	Gamma control (1)	0	1	0	0	0	0	0	PKP12	PKP11	PKP10	0	0	0	0	0	PKP02	PKP01	PKP00	Adjust the Gamma control.	0
R31h	Gamma control (2)	0	1	0	0	0	0	0	PKP32	PKP31	PKP30	0	0	0	0	0	PKP22	PKP21	PKP20	Adjust the Gamma control.	0
R32h	Gamma control (3)	0	1	0	0	0	0	0	PKP52	PKP51	PKP50	0	0	0	0	0	PKP42	PKP41	PKP40	Adjust the Gamma control.	0
R33h	Gamma control (4)	0	1	0	0	0	0	0	PRP12	PRP11	PRP10	0	0	0	0	0	PRP02	PRP01	PRP00	Adjust the Gamma control.	0
R34h	Gamma control (5)	0	1	0	0	0	0	0	PKN12	PKN11	PKN10	0	0	0	0	0	PKN02	PKN01	PKN00	Adjust the Gamma control.	0
R35h	Gamma control (6)	0	1	0	0	0	0	0	PKN32	PKN31	PKN30	0	0	0	0	0	PKN22	PKN21	PKN20	Adjust the Gamma control.	0
R36h	Gamma control (7)	0	1	0	0	0	0	0	PKN52	PKN51	PKN50	0	0	0	0	0	PKN42	PKN41	PKN40	Adjust the Gamma control.	0
R37h	Gamma control (8)	0	1	0	0	0	0	0	PRN12	PRN11	PRN10	0	0	0	0	0	PRN02	PRN01	PRN00	Adjust the Gamma control.	0
R3Fh	Gamma control (9)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	VDR1	VDR0	Adjust the Gamma control.	0

Note:

* means 'doesn't matter'.
 After setting TE = 1, 18 (max.) clock cycles are required for a serial transfer to be completed. During that time, do not change the bits of instructions, which are to be transferred.
 High-speed write mode is available only for the RAM writing.

Reset Function

The HD66770 is internally initialized by RESET input. Reset the gate driver/Power supply IC as its settings are not automatically reinitialized when the HD66770 is reset. The reset input must be held for at least 1 ms. Do not access the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied (10 ms).

Instruction Set Initialization:

- 1. Start oscillation executed
- 2. Driver output control (NL4-0 = 10101, SS = 0, CS = 0)
- 3. LCD driving AC control (FLD1-0 = 01, B/C = 0, EOR = 0, NW5-0 = 00000)
- 4. Power control 1 (SAP2-0 = 000, BT2-0 = 000, DC2-0 = 000, AP2-0 = 000: LCD power off, SLP = 0, STB = 0: Standby mode off)
- 5. Power control 2 (CAD = 0, VRN4-0 = 0000, VRP4-0 = 0000
- 6. Entry mode set (HWM = 0, I/D1-0 = 11: Increment by 1, AM = 0: Horizontal move, LG2–0 = 000: Replace mode)
- 7. Compare register (CP15-0: 00000000000000000)
- 8. Display control (PT1-0 = 00, VLE2-1 = 00: No vertical scroll, SPT = 0, GON = 0, DTE = 0, CL = 0: 65536 color mode, REV = 0, D1-0 = 00: Display off)
- 9. COM driver interface control (TE = 0, IDX2-0 = 000)
- 10. Frame cycle control (NO1-0 = 00, SDT1-0 = 00, EQ1-0 = 00: no equalizer, DIV1-0 = 00: 1-divided clock, RTN3-0 = 0000: 16 clock cycle in 1H period)
- 11. Power control 3 (VC2-0 = 000)
- 12. Power control 4 (VRL3-0 = 0000, PON=0 VRH3-0= 00000)
- 13. Power control 5 (VCOMG = 0, VDV4-0 = 00000, VCM4-0 = 00000
- 14. Gate scanning starting position (SCN4-0 = 00000)
- 15. Vertical scroll (VL7–0 = 0000000)
- 16. 1st screen division (SE17-10 = 11111111, SS17-10 = 00000000)
- 17. 2nd screen division (SE27-20 = 11111111, SS27-20 = 00000000)
- 18. Horizontal RAM address position (HEA7-0 = 10000011, HSA7-0 = 00000000)
- 19. Vertical RAM address position (VEA7-0 = 10101111, VSA7-0 = 0000000)
- 20. RAM write data mask (WM15–0 = 0000H: No mask)
- 21. RAM address set (AD15-0 = 0000H)
- 22. Gamma control

(PKP02-00 = 000, PKP12-10 = 000, PKP22-20 = 000, PKP32-30 = 000, PK42-40 = 000, PKP52-50 = 000, PRP02-00 = 000, PRP12-10 = 000) (PKN02-00 = 000, PKN12-10 = 000, PKN22-20 = 000, PKN32-30 = 000, PKN42-40 = 000, PKN52-50 = 000, PRN02-00 = 000, PRN12-10 = 000) (VDR-1 = "00")

GRAM Data Initialization:

This is not automatically initialized by reset input but must be initialized by software while display is off (D1-0 = 00).

Output Pin Initialization:

- 1. LCD driver output pins (Source output): Output GND level
- 2. Oscillator output pin (OSC2): Outputs oscillation signal
- 3. Gate interface signals (GCS*, GCL, and GDA): Halt
- 4. Timing signals (CL1, M, FLM, DISPTMG, and DCCLK): Halt

Parallel Data Transfer

16-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the GND/GND/GND level allows 68-system E-clocksynchronized 16-bit parallel data transfer. Setting the IM2/1/0 to the GND/Vcc/GND level allows 80-system 16-bit parallel data transfer. When the number of buses or the mounting area is limited, use an 8-bit bus interface.

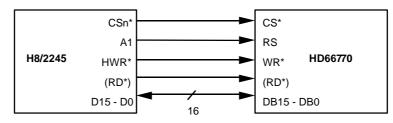


Figure 34 Interface to 16-bit Microcomputer

8-bit Bus Interface

Setting the IM2/1/0 (interface mode) to the GND/GND/Vcc level allows 68-system E-clocksynchronized 8-bit parallel data transfer using pins DB15–DB8. Setting the IM1/0 to the Vcc/Vcc level allows 80-system 8-bit parallel data transfer. The 16-bit instructions and RAM data are divided into eight upper/lower bits and the transfer starts from the upper eight bits. Fix unused pins DB7–DB0 to the Vcc or GND level. Note that the upper bytes must also be written when the index register is written to.

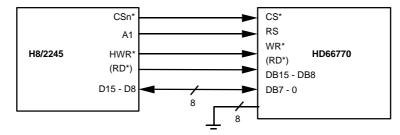


Figure 35 Interface to 8-bit Microcomputer

Note: Transfer synchronization function for an 8-bit bus interface

The HD66770 supports the transfer synchronization function which resets the upper/lower counter to count upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in the display system.

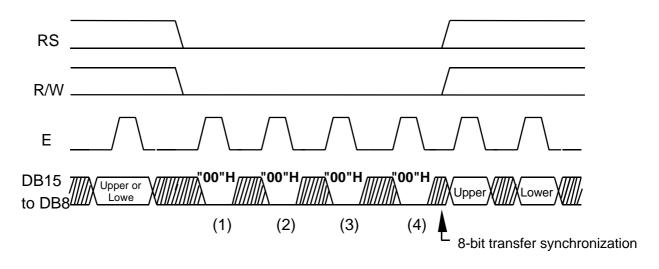


Figure 36 8-bit Transfer Synchronization

Serial Data Transfer

Setting the IM1 pin to the GND level and the IM2 pin to the Vcc level allows standard clock-synchronized serial data (SPI) transfer, using the chip select line (CS*), serial transfer clock line (SCL), serial input data (SDI), and serial output data (SDO). For a serial interface, the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins which are not used must be fixed at Vcc or GND.

The HD66770 initiates serial data transfer by transferring the start byte at the falling edge of CS^* input. It ends serial data transfer at the rising edge of CS^* input.

The HD66770 is selected when the 6-bit chip address in the start byte transferred from the transmitting device matches the 6-bit device identification code assigned to the HD66770. The HD66770, when selected, receives the subsequent data string. The least significant bit of the identification code can be determined by the ID pin. The five upper bits must be 01110. Two different chip addresses must be assigned to a single HD66770 because the seventh bit of the start byte is used as a register select bit (RS): that is, when RS = 0, data can be written to the index register or status can be read, and when RS = 1, an instruction can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the start byte (R/W bit). The data is received when the R/W bit is 0, and is transmitted when the R/W bit is 1.

After receiving the start byte, the HD66770 receives or transmits the subsequent data byteby-byte. The data is transferred with the MSB first. All HD66770 instructions are 16 bits. Two bytes are received with the MSB first (DB15 to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched internally as the upper eight bits of the instruction and the second byte is fetched internally as the lower eight bits of the instruction.

Four bytes of RAM read data after the start byte are invalid. The HD66770 starts to read correct RAM data from the fifth byte.

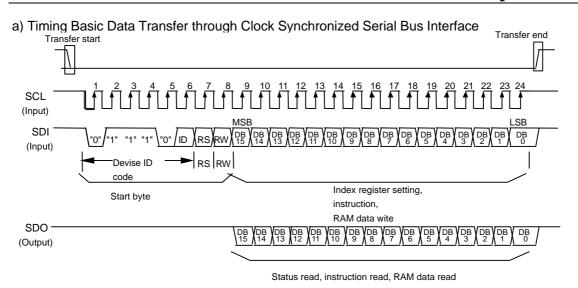

Transfer Bit	S	1	2	3	4	5	6	7	8
Start byte format	Transfer start	Dev	ice ID c	ode				RS	R/W
		0	1	1	1	0	ID	_	

Table 30Start Byte Format

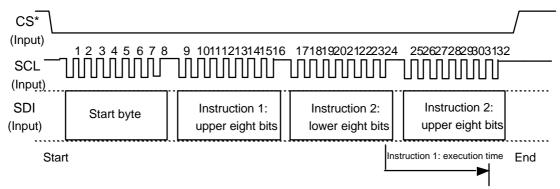
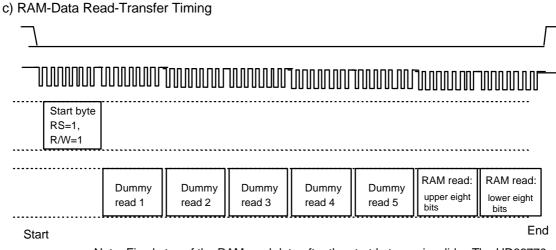
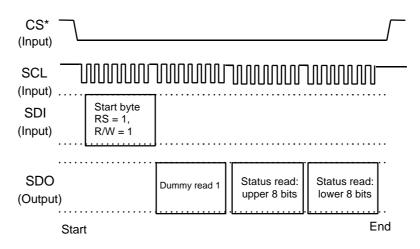

Note: ID bit is selected by the IM0/ID pin.

Table 31RS and R/W Bit Function


RS	R/W	Function
0	0	Sets index register
0	1	Reads status
1	0	Writes instruction or RAM data
1	1	Reads instruction or RAM data

b) Timing of Consecutive Data-Transfer through Clock-synchronized serial Bus Interface



Note: The first byte after the start byte is always the upper eight bits.

Note: Five bytes of the RAM read data after the start byte are invalid. The HD66770 starts to read the correct RAM data from the sixth byte.

d) Status Read / Instruction Read

Note: One byte of the read data after the start byte are invalid. The HD66770 starts to read the correct data from the second byte.

Figure 38: Procedure for Transfer on Clock-Synchronized Serial Bus Interface (2)

High-Speed Burst RAM Write Function

The HD66770 has a high-speed burst RAM-write function that can be used to write data to RAM in onefourth the access time required for an equivalent standard RAM-write operation. This function is especially suitable for applications which require the high-speed rewriting of the display data, for example, display of color animations, etc.

When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the HD66770 internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can be executed for animated displays, etc.

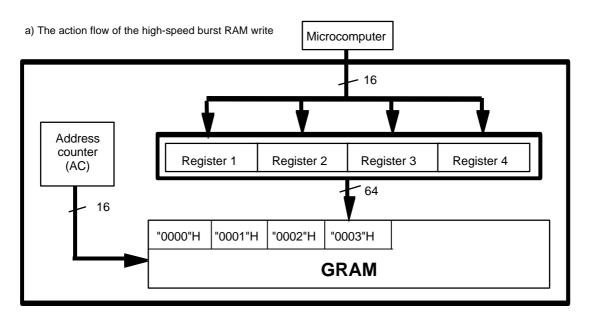
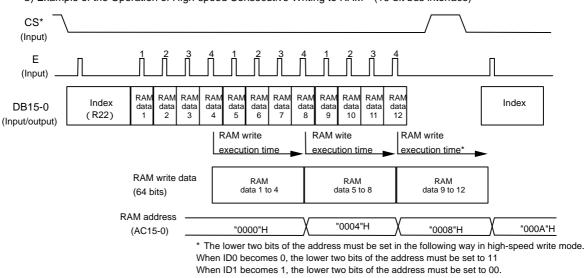
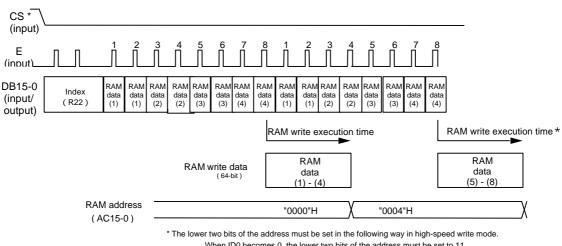




Figure 42 Flow of Operation in High-Speed Consecutive Writing to RAM

b) Example of the Operation of High-speed Consecutive Writing to RAM (16-bit bus interface)

Note: When a high-speed RAM write is canceled, the next instruction must only be executed after the RAM write execution time has elapsed.

C) Example of the Operation of High-Speed Consecutive Writing to RAM (8-bit bus interface)

When ID0 becomes 0, the lower two bits of the address must be set to 11. When ID1 becomes 0, the lower two bits of the address must be set to 00.

By using high-speed burst RAM write function, data is written to RAM each four words. Therefore when using 8-bit bus interface, data will be stored 8 times to internal register before written to RAM

D66770

When high-speed RAM write mode is used, note the following.

- Notes: 1. The logical and compare operations cannot be used.
 - 2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to the following values.

*When ID0=0, the lower two bits in the address must be set to 11 and be written to RAM.

*When ID0=1, the lower two bits in the address must be set to 00 and be written to RAM.

- 3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be written to RAM.
- 4. When the index register and RAM data write (R22h) have been selected, the data is always written first. RAM cannot be written to and read from at the same time. HWM must be set to 0 while RAM is being read.
- 5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched and the address must then be set.
- 6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address section.

	Normal RAM Write (HWM=0)	High-Speed RAM Write (HWM=1)
Logical operation function	Can be used	Cannot be used
Compare operation function	Can be used	Cannot be used
Write mask function	Can be used	Can be used
RAM address set	Can be specified by word	ID0 bit=0: Set the lower two bits to 11
		ID0 bit=1: Set the lower two bits to 00
RAM read	Can be read by word	Cannot be used
RAM write	Can be written by word	Dummy write operations may have to be inserted according to a window address-range specification
Window address	Can be set by word	Set necessary more than four word

Table 32 Comparison between Normal and High-Speed RAM Write Operations

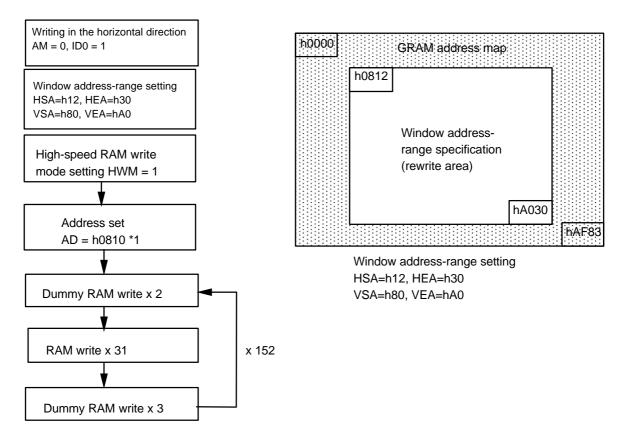
High-Speed RAM Write in the Window Address

When a window address range is specified, RAM data which is in an optional window area can be rewritten consecutively and quickly by inserting dummy write operations so that RAM access counts become 4N as shown in the tables below.

Dummy write operations may have to be inserted as the first or last operations for a row of data, depending on the horizontal window-address range specification bits (HSA1 to 0, HEA1 to 0). Number of dummy write operations of a row must be 4N.

HSA1	HSA0	Number of Dummy Write Operations to be Inserted at the Start of a Row
0	0	0
0	1	1
1	0	2
1	1	3

 Table 33
 Number of Dummy Write Operations in High-Speed RAM Write (HSA Bits)


Table 34	Number of Dummy V	Write Operations in	High-Speed RAM	Write (HEA Bits)
I WOLC C I	i tulinoer of Dulining	The operations in	ingh opeen init	

HEA1	HEA0	Number of Dummy Write Operations to be Inserted at the End of a Row
0	0	3
0	1	2
1	0	1
1	1	0

Each row of access must consist of $4 \times N$ operations, including the dummy writes. Horizontal access count =first dummy write count + write data count + last dummy write count = $4 \times N$

An example of high-speed RAM write with a window address-range specified is shown below.

The window address-range can be rewritten to consecutively and quickly by inserting two dummy writes at the start of a row and three dummy writes at the end of a row, as determined by using the window address-range specification bits (HSA1 to 0=10, HEA1 to 0=00).

Note: The address set for the high-speed RAM write must be 00 or 11 according to the value of the ID0 bit. Only RAM in the specified window address-range will be over written.

Figure 45: Example of the High-Speed RAM Write with a Window Address-Range Specification

Window Address Function

When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address register (start: HSA7-0, end: HEA7-0) or the vertical address register (start: VSA7-0, end: VEA7-0) can be written to consecutively.

Data is written to addresses in the direction specified by the AM bit (increment/decrement). When image data, etc. is being written, data can be written consecutively without thinking a data wrap by doing this.

The window must be specified to be within the GRAM address area described below. Addresses must be set within the window address.

[Restriction on window address-range settings] (horizontal direction) 00H ≤ HSA7-0 ≤ HEA7-0 ≤ 83H (vertical direction) 00H ≤ VSA7-0 ≤ VEA7-0 ≤ AFH [Restriction on address settings during the window address] (RAM address) HSA7 to 0 ≤ AD7-0 ≤ HEA7-0 VSA7-0 ≤ AD15-8 ≤ VEA7-0 Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the value of the ID0 bit. ID0=0: The lower two bits of the address must be set to 11. ID0=1: The lower two bits of the address must be set to 00.

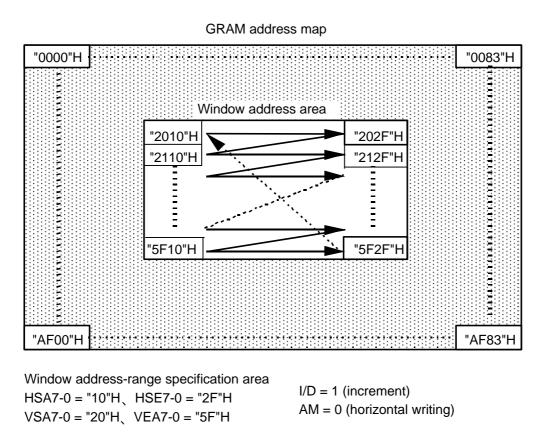


Figure 46 Example of Address Operation in the Window Address Specification

Graphics Operation Function

The HD66770 can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus architecture and internal graphics-bit operation function. This function supports the following:

- 1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
- 2. A logical operation write function that writes the data sent from the microcomputer and the original RAM data by a logical operation.
- 3. A conditional write function that compares the original RAM data or write data and the comparebit data and writes the data sent from the microcomputer only when the conditions match.

Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten. The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAM-write-data mask register, and the read/write from the microcomputer.

	Bit Se	etting		
Operation Mode	I/D	AM	LG2-0	Operation and Usage
Write mode 1	0/1	0	000	Horizontal data replacement, horizontal-border drawing
Write mode 2	0/1	1	000	Vertical data replacement, vertical-border drawing
Write mode 3	0/1	0	110 111	Conditional horizontal data replacement, horizontal-border drawing
Write mode 4	0/1	1	110 111	Conditional vertical data replacement, vertical-border drawing
Read/write mode 1	0/1	0	001 010 011	Horizontal data write with logical operation, horizontal- border drawing
Read/write mode 2	0/1	1	001 010 011	Vertical data write with logical operation, vertical-border drawing
Read/write mode 3	0/1	0	100 101	Conditional horizontal data replacement, horizontal-border drawing
Read/write mode 4	0/1	1	100 101	Conditional vertical data replacement, vertical-border drawing

Table 35Graphics Operation

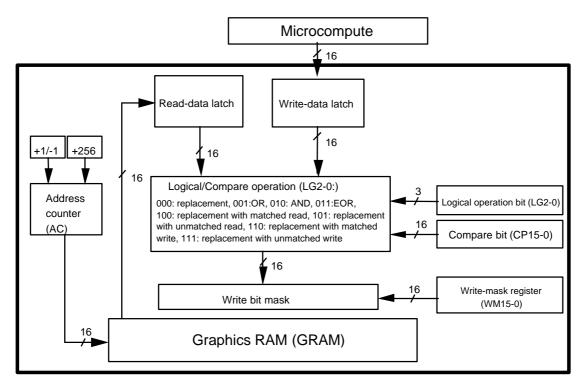


Figure 47 Data Processing Flow of the Graphic Operation

Write-data Mask Function

The HD6677- has a bit-wise write-data mask function that controls writing the two-byte data from the microcomputer to the GRAM. Bits that are 0 in the write-data mask register (WM15–0) cause the corresponding DB bit to be written to the GRAM. Bits that are 1 prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is retained. This function can be used when only one-pixel data is rewritten or the particular display color is selectively rewritten.

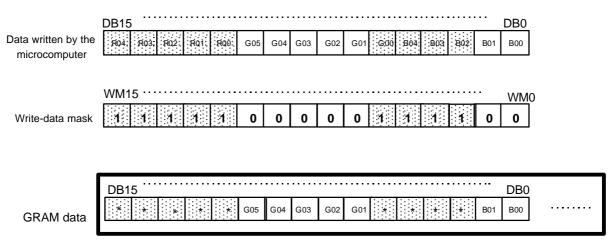


Figure 48 Example of Write-data Mask Function Operation

Graphics Operation Processing

1. Write mode 1: AM = 0, LG2-0 = 000

This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics RAM (GRAM) or to draw borders. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

Operation Examples:

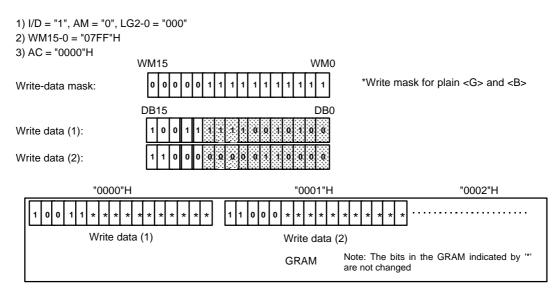


Figure 49 Writing Operation of Write Mode 1

2. Write mode 2: AM = 1, LG2-0 = 000

This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM, develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I/D = "1", AM = "1", LG2-0 = "000" 2) WM15-0 = "07FF"H 3) AC = "0000"H

Write-data mask:) 1	I 1	1	WM0		
Write data	a (1	I):					I	DB	0	Т	1	1		1		1	DB0	
Write data	a (2	2):						1	1	C) () (0	0 1 1 0 0 0 0	
Write data (3):								0	1	1	1	1		1) (0	1000001	
"0000"H	1	0	0	1	1	*	*	*	*	*	*	*	*	*	*	*	Write data (1)	
"0100"H	1	1	0	0	0	*	*	*	*	*	*	*	*	*	*	*	Write data (2)	
"0200"H	0	1	1	1	1	*	*	*	*	*	*	*	*	*	*	*	Write data (3)	GRAM
														GIVAIM				

Note: 1. The bits in the GRAM indicated by '*' are not changed.

2. After writing to address "AF00"H, the AC jumps to "000"H.

Figure 50 Writing Operation of Write Mode 2

3. Write mode 3: AM = 0, LG2–0 = 110/111

This mode is used when the data is horizontally written by comparing the write data and the set value of the compare register (CP15–0). When the result of the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–0) is also enabled. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the GRAM.

Operation Examples:

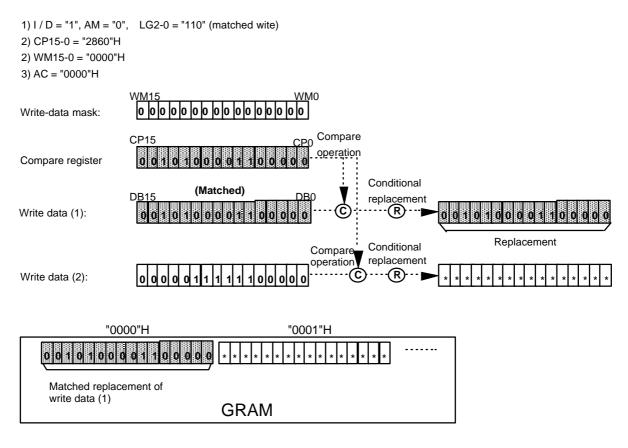


Figure 51 Writing Operation of Write

4. Write mode 4: AM = 1, LG2-0 = 110/111

This mode is used when a vertical comparison is performed between the write data and the set value of the compare register (CP15–0) to write the data. When the result by the comparison in a byte unit satisfies the condition, the write data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I/D = "1", AM = "1", LG2-0 = "111" (unmatched write) 2) CP15-0 = "2860"H 2) WM15-0 = "0000"H 3) AC = "0000"H WM0 WM15 Write-data mask: 0 0 0 CP15 CP0 Compare register: 00 00 0 Conditional (Unmatched) **DB15** replacement DB0 ·R) Write data (1): 100 110011 1 1 (C Compare Conditional operation (Matched) replacement Ć) (R)Write data (2): 000 001 0 0 0 0 Compare operation "0000"H "0001"H "0000"⊢ Write data (1) Write data (2) "0100"H Ξ Ξ GRAM "AF00"H

Note: 1. The bits in the GRAM indicated by '*' are not changed.2. After writing to address "AF00"H, the AC jumps to "0001"H.

Figure 52 Writing Operation of Write Mode 4

Rev.1.1 / April 2002

5. Read/Write mode 1: AM = 0, LG2-0 = 001/010/011

This mode is used when the data is horizontally written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

Operation Examples:

1) I/D = "1", AM = "0", LG2-0 = "001"(OR) 2) WM15-0 = "0000"H 3) AC = "0000"H

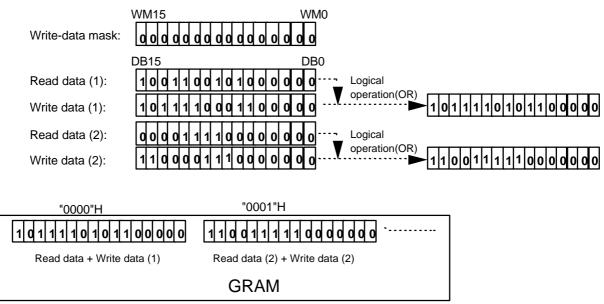
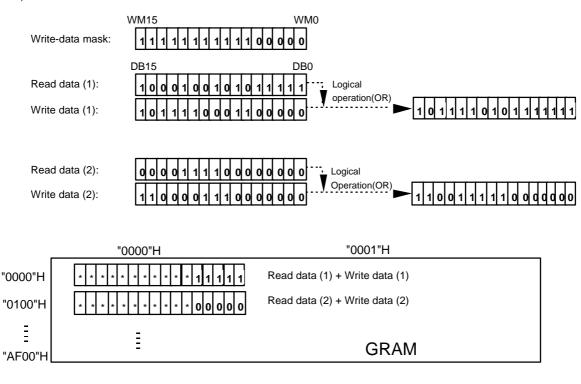


Figure 53 Writing Operation of Read/Write Mode 1


Rev.1.1 / April 2002

6. Read/Write mode 2: AM = 1, LG1-0 = 001/010/011

This mode is used when the data is vertically written at high speed by performing a logical operation with the original data. It reads the display data (original data), which has already been written in the GRAM, performs a logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode can read the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as for the write operation since the read operation of the original data does not latch the read data into the microcomputer and temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

1) I / D = "1", AM = "1", LG2-0 = "001"(OR) 2) WM15-0 = "FFE0"H 3) AC = "0000"H

Note: 1. The bits in the GRAM indicated by '*' are not changed. 2. After writing to address "AF00"H, the AC jumps to "0001"H.

Figure 54 Writing Operation of Read/Write Mode 2

7. Read/Write mode 3: AM = 0, LG2-0 = 100/101

This mode is used when the data is horizontally written by comparing the original data and the set value of compare register (CP15–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the comparison satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right edges of the GRAM.

Operation Examples:

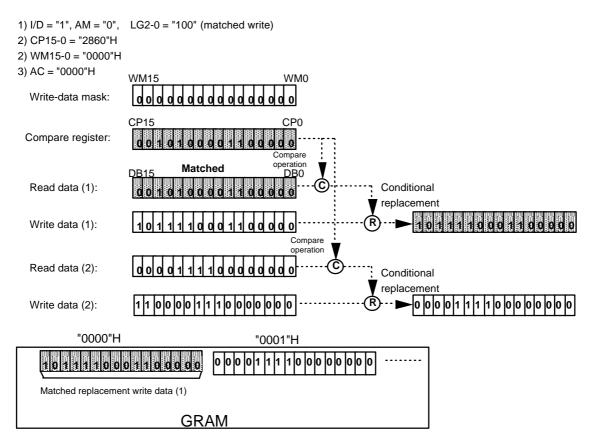
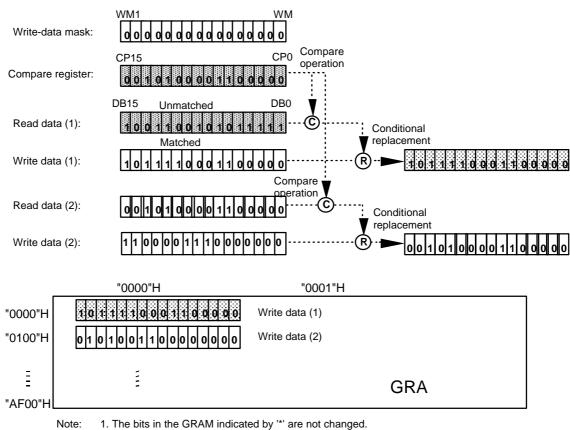


Figure 55 Writing Operation of Read/Write Mode 3


8. Read/Write mode 4: AM = 1, LG2-0 = 100/101

This mode is used when the data is vertically written by comparing the original data and the set value of the compare register (CP15–0). It reads the display data (original data), which has already been written in the GRAM, compares the original data and the set value of the compare register in byte units, and writes the data sent from the microcomputer to the GRAM only when the result of the compare operation satisfies the condition. This mode reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the write operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The writedata mask function (WM15-0) is also enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.

Operation Examples:

- 1) I / D = "1", AM = "1", LG2-0 = "101" (unmatched write) 2) CP15-0 = "2860"H
- 2) WM15-0 = "0000"H

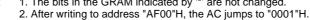


Figure 56 Writing Operation of Read/Write Mode 4

Gamma Adjustment Function

The HD66770incorporates gamma adjustment function for the 65,536-color display. Gamma adjustment is implemented by deciding the 8-grayscale level with angle adjustment and micro adjustment register. Also, angle adjustment and micro adjustment is fixed for each of the internal positive and negative polarity. Set up by the liquid crystal panel's specification.

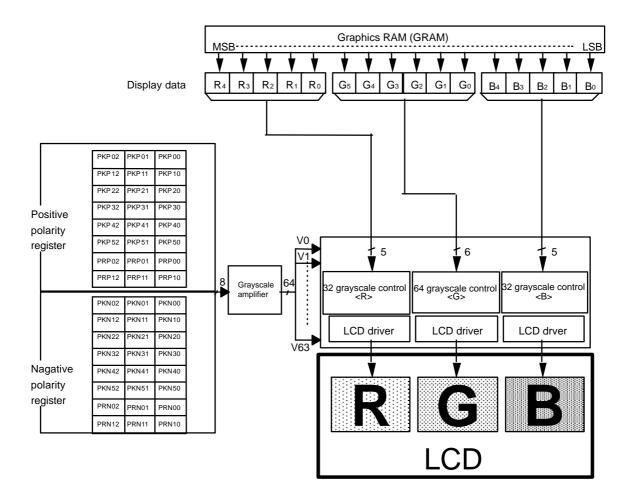


Figure 57: Gamma Adjustment Function

Structure of Grayscale Amplifier

Indicating structure of the grayscale amplifier as below. Determine 8 level (VIN0-VIN7) by the gradient adjuster and the micro adjustment register. Also, dividing these levels with ladder resistors generates V0 to V64.

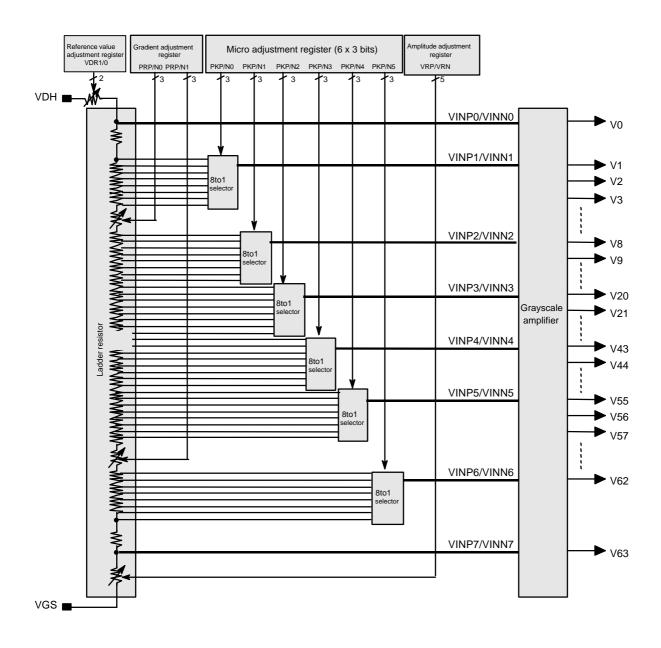


Figure 58: Structure of Grayscale Amplifier

Rev.1.1 / April 2002

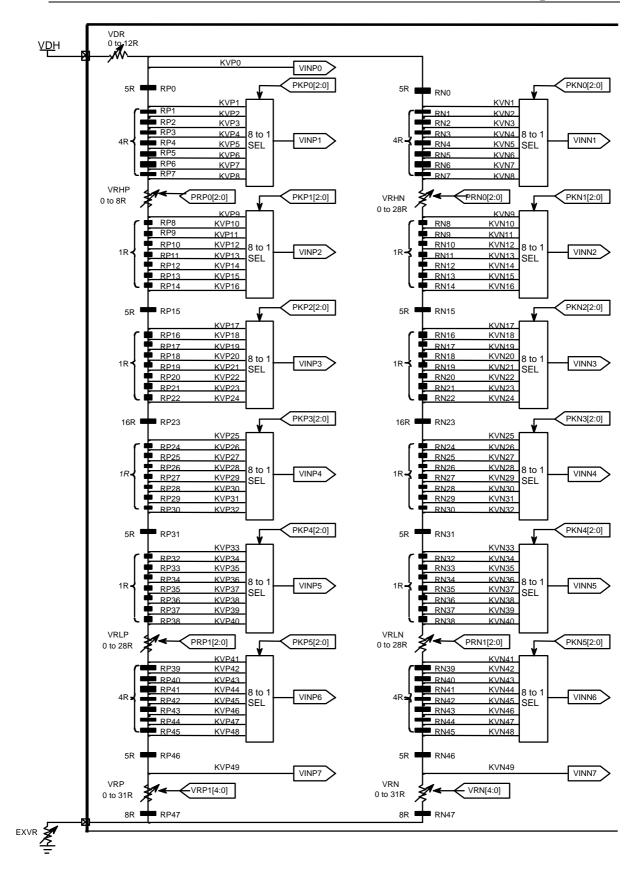
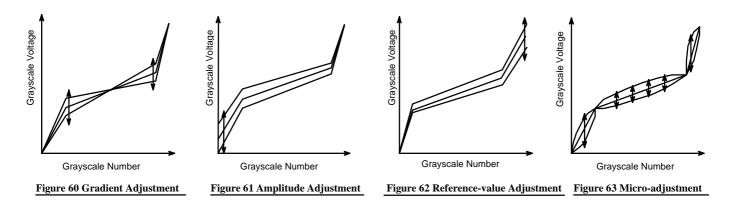



Figure 59: Structure of Ladder / 8 to 1 Selector

Gamma Adjustment Register

This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This register can independent set up to positive/negative polarities and there are four types of register groups to adjust gradient, amplitude, reference-value, and micro-adjustment on number of the grayscale, characteristics of the grayscale voltage. (Using the same setting for Reference-value and R.G.B.) Following graphics indicates the operation of each adjusting register.

1. Gradient adjusting register

The gradient-adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable resistor (VRHP (N) / VRL (N)) of the ladder resistor for the grayscale voltage generator. Also, there is an independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.

2. Amplitude adjusting register

The amplitude-adjusting resistor is to adjust amplitude of the grayscale voltage. To accomplish the adjustment, it controls the variable resistor (VRP (N)) of the ladder resistor for the grayscale voltage generator located at lower side of the ladder resistor. (Adjust upper side by input VDH level.) Also, there is an independent resistor on the positive/negative polarities as well as the gradient-adjusting resistor.

3. Reference-value adjusting register

Resister of reference value is to adjust the reference value of grayscale voltage. This function is implemented by controlling the variable resistor (VDR) above the ladder resistor block for grayscale voltage generation. This resistor is common to both the positive and negative.

4. Micro-adjusting register

The micro-adjusting register is to make subtle adjustment of the grayscale voltage level. To accomplish the adjustment, it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well as other adjusting resistors.

Resistor Classification	For Positive Polarity	For Negative Polarity	Set-up Contents
Gradient	PRP0[2:0]	PRN0[2:0]	Variable Resistor VR HP(N)
Adjustment	PRP1[2:0]	PRN1[2:0]	Variable Resistor VR LP(N)
Amplitude Adjustment	VRP[4:0]	VRN[4:0]	Variable Resistor VRP(N)
Reference-value Adjustment	VDR[[1:0]	Variable Resistor VDR
	PKP0[2:0]	PKN0[2:0]	8 to 1 selector voltage level for the grayscale 1
	PKP1[2:0]	PKN1[2:0]	8 to 1 selector voltage level for the grayscale 8
Micro- adjustment	PKP2[2:0]	PKN2[2:0]	8 to 1 selector voltage level for the grayscale 20
aujustment	PKP3[2:0]	PKN3[2:0]	8 to 1 selector voltage level for the grayscale 43
	PKP4[2:0]	PKN4[2:0]	8 to 1 selector voltage level for the grayscale 55
	PKP5[2:0]	PKNS5[2:0]	8 to 1 selector voltage level for the grayscale 62

Table 36: Output Signal List

Ladder Resistor / 8 to 1 Selector

Block configuration

This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistor. The gamma registers control the variable resistors and 8 to 1 selector resistors. Also, there are pins that connect to the external variable resistor. And it allows compensating the dispersion of length between one panel to another.

Variable Resistor

There are 3 types of the variable resistors that is for the gradient adjustment (VRHP (N) / VRLP (N)), for the amplitude adjustment (VRP (N)), and for the reference-value adjustment (VDR). The ohmic value is set by the gradient adjusting resistor, the amplitude-adjusting resistor, and the reference-value adjusting resistor as below.

Table 37: Gradient Adjustment

Register Value Resistance Value PRP (N) [2.0] VRP (N) 000 0R 001 4R 010 8R 011 12R 101 20R 110 24R 28R 111

Table 38: Amplitude Adjustment

Resistance Value

VRP (N)

0R

1R

2R

29R

30R

31R

Register Value

VRP (N) [4.0]

00000

00001

00010

11101

11110 11111 Table 39: Reference-value Adjustment

Register Value	Resistance Value
VDR [1.0]	VDR
00	0R
01	4R
10	8R
11	12R

The 8 to 1 Selector

In the 8 to 1 selector, the voltage level can be selected from the levels which are generated by ladder resistors. And output the six types of the reference voltage, the VIN1- to VIN6. Following figure explains the relationship between the micro-adjusting register and the selecting voltage.

Register Value	Selected Voltage					
PKP (N) [2:0]	VINP (N) 1	VINP (N) 2	VINP (N) 3	VNIP (N) 4	VNIP (N) 5	VINP (N) 6
000	KVP (N) 1	KVP (N) 9	KVP (N) 17	KVP (N) 25	KVP (N) 33	KVP (N) 41
001	KVP (N) 2	KVP (N) 10	KVP (N) 18	KVP (N) 26	KVP (N) 34	KVP (N) 42
010	KVP (N) 3	KVP (N) 11	KVP (N) 19	KVP (N) 27	KVP (N) 35	KVP (N) 43
011	KVP (N) 4	KVP (N) 12	KVP (N) 20	KVP (N) 28	KVP (N) 36	KVP (N) 44
100	KVP (N) 5	KVP (N) 13	KVP (N) 21	KVP (N) 29	KVP (N) 37	KVP (N) 45
101	KVP (N) 6	KVP (N) 14	KVP (N) 22	KVP (N) 30	KVP (N) 38	KVP (N) 46
110	KVP (N) 7	KVP (N) 15	KVP (N) 23	KVP (N) 31	KVP (N) 39	KVP (N) 47
111	KVP (N) 8	KVP (N) 16	KVP (N) 24	KVP (N) 32	KVP (N) 40	KVP (N) 48

Table 40

Rev. 1.1 / April 2002

Pins		Formula	MIcro-adjusting register value	Reference Voltage
KVP0	VDH*r		-	VINP0
KVP1	VDH -	V*5R/SUMRP	PKP02-00 = "000"	
KVP2	VDH -	V*9R/SUMRP	PKP02-00 = "001"	_
KVP3	VDH -	V*13R/SUMRP	PKP02-00 = "010"	
KVP4	VDH -	V*17R/SUMRP	PKP02-00 = "011"	– VINP1
KVP5	VDH -	V*21R/SUMRP	PKP02-00 = "100"	
KVP6	VDH -	V*25R/SUMRP	PKP02-00 = "101"	
KVP7	VDH -	V*29R/SUMRP	PKP02-00 = "110"	
KVP8	VDH -	V*33R/SUMRP	PKP02-00 = "111"	—
KVP9	VDH -	V*(33R+VRHP)/SUMRP	PKP12-10 = "000"	
KVP10	VDH -	V*(34R+VRHP)/SUMRP	PKP12-10 = "001"	
KVP11	VDH -	V*(35R+VRHP)/SUMRP	PKP12-10 = "010"	_
KVP12	VDH -	V*(36R+VRHP)/SUMRP	PKP12-10 = "011"	_
KVP13	VDH -	V*(37R+VRHP)/SUMRP	PKP12-10 = "100"	VINP2
KVP14	VDH -	V*(38R+VRHP)/SUMRP	PKP12-10 = "101"	_
KVP15	VDH -	V*(39R+VRHP)/SUMRP	PKP12-10 = "110"	—
KVP16	VDH -	V*(40R+VRHP)/SUMRP	PKP12-10 = "111"	_
KVP17	VDH -	V*(45R+VRHP)/SUMRP	PKP22-20 = "000"	
KVP18	VDH -	V*(46R+VRHP)/SUMRP	PKP22-20 = "001"	
KVP19	VDH -	V*(47R+VRHP)/SUMRP	PKP22-20 = "010"	
KVP20	VDH -	V*(48R+VRHP)/SUMRP	PKP22-20 = "011"	_
KVP21	VDH -	V*(49R+VRHP)/SUMRP	PKP22-20 = "100"	VINP3
KVP22	VDH -	V*(50R+VRHP)/SUMRP	PKP22-20 = "101"	_
KVP23	VDH -	V*(51R+VRHP)/SUMRP	PKP22-20 = "110"	_
KVP24	VDH -	V*(52R+VRHP)/SUMRP	PKP22-20 = "111"	
KVP25	VDH -	V*(68R+VRHP)/SUMRP	PKP32-30 = "000"	
KVP26	VDH -	V*(69R+VRHP)/SUMRP	PKP32-30 = "001"	_
KVP27	VDH -	V*(70R+VRHP)/SUMRP	PKP32-30 = "010"	_
KVP28	VDH -	V*(71R+VRHP)/SUMRP	PKP32-30 = "011"	_
KVP29	VDH -	V*(72R+VRHP)/SUMRP	PKP32-30 = "100"	- VINP4
KVP30	VDH -	V*(73R+VRHP)/SUMRP	PKP32-30 = "101"	_
KVP31	VDH -	V*(74R+VRHP)/SUMRP	PKP32-30 = "110"	_
KVP32	VDH -	V*(75R+VRHP)/SUMRP	PKP32-30 = "111"	_
KVP32	VDH -	V*(80R+VRHP)/SUMRP	PKP42-40 = "000"	
KVP34	VDH -	V*(81R+VRHP)/SUMRP	PKP42-40 = 000 PKP42-40 = "001"	—
KVP35	VDH -	V*(82R+VRHP)/SUMRP	PKP42-40 = 001 PKP42-40 = "010"	_
KVP36	VDH -	V*(83R+VRHP)/SUMRP	PKP42-40 = "010"	_
KVP30 KVP37	VDH -	V*(84R+VRHP)/SUMRP	PKP42-40 = "011" PKP42-40 = "100"	– VINP5
			PKP42-40 = 100 PKP42-40 = "101"	_
KVP38 KVP39	VDH - VDH -	V*(85R+VRHP)/SUMRP V*(86R+VRHP)/SUMRP		_
KVP39 KVP40			PKP42-40 = "110" PKP42-40 = "111"	_
	VDH -			
KVP41	VDH -		PKP52-50 = "000" PKP52-50 = "001"	—
KVP42	VDH -	V*(91R+VRHP+VRLP)/SUMRP		_
KVP43	VDH -	V*(95R+VRHP+VRLP)/SUMRP	PKP52-50 = "010"	_
KVP44	VDH -	V*(99R+VRHP+VRLP)/SUMRP	PKP52-50 = "011"	- VINP6
KVP45	VDH -	V*(103R+VRHP+VRLP)/SUMRP	PKP52-50 = "100"	_
KVP46	VDH -	V*(107R+VRHP+VRLP)/SUMRP	PKP52-50 = "101"	_
KVP47	VDH -	V*(111R+VRHP+VRLP)/SUMRP	PKP52-50 = "110"	_
KVP48	VDH -	V*(115R+VRHP+VRLP)/SUMRP	PKP52-50 = "111"	
KVP49	VDH -	V*(120R+VRHP+VRLP)/SUMRP	-	VINP7

Table 41Voltage formula: Positive

r: {[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR}/{VDR+[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR}

SUMRP: Total of the positive polarity ladder resistance = 128 R + VRHP + VRLP + VRP

SUMRN: Total of the negative polarity ladder resistance = 128 R + VRLN + VRN

V: Voltage difference between KV0 to KV49 period = VDH*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]

Table 42:	Voltage	Formula	(Positive	Polarity)
-----------	---------	---------	-----------	-------------------

	Formula
V0	VINNO
V1	VINN1
V2	V3+(V1-V3)*(8/24)
<u>V3</u>	V8+(V1-V8)*(450/800)
V4	V8+(V3-V8)*(16/24)
<u>V5</u>	V8+(V3-V8)*(12/24)
<u>V6</u>	V8+(V3-V8)*(8/24)
V7	<u>V8+(V3-V8)*(4/24)</u> VINP
<u>V8</u> V9	
V9 V10	V20+(V8-V20)*(22/24)
V10 V11	V20+(V8-V20)*(20/24) V20+(V8-V20)*(18/24)
V11 V12	V20+(V8-V20) (18/24)
V12 V13	V20+(V8-V20) (10/24) V20+(V8-V20)*(14/24)
V14	V20+(V8-V20)*(12/24)
V15	V20+(V8-V20)*(10/24)
V16	V20+(V8-V20)*(8/24)
V17	V20+(V8-V20)*(6/24)
V18	V20+(V8-V20)*(4/24)
V19	V20+(V8-V20)*(2/24)
V20	VINN3
V21	V43+(V20-V43)*(22/23)
V22	V43+(V20-V43)*(21/23)
V23	V43+(V20-V43)́*(20/23)́
V24	V43+(V20-V43)*(19/23)
V25	V43+(V20-V43)*(18/23)
V26	V43+(V20-V43)*(17/23)
<u>V27</u>	V43+(V20-V43)*(16/23)
V28	V43+(V20-V43)*(15/23)
V29	V43+(V20-V43)*(14/23)
<u>V30</u>	V43+(V20-V43)*(13/23)
<u>V31</u>	V43+(V20-V43)*(12/23)
<u>V32</u> V33	V43+(V20-V43)*(11/23) V43+(V20-V43)*(10/23)
V34	V43+(V20-V43) (10/23)
V35	V43+(V20-V43)*(8/23)
V36	V43+(V20-V43)*(7/23)
V37	V43+(V20-V43)*(6/23)
V38	V43+(V20-V43)*(5/23)
V39	V43+(V20-V43)*(4/23)
V40	V43+(V20-V43)*(3/23)
V41	V43+(V20-V43)*(2/23)
V42	V43+(V20-V43)*(1/23)
V43	VINN4
V44	V55+(V43-V55)*(22/24)
V45	V55+(V43-V55)*(20/24)
V46	<u>V55+(V43-V55)*(18/24)</u>
V47	V55+(V43-V55)*(16/24)
V48	<u>V55+(V43-V55)*(14/24)</u>
V49	V55+(V43-V55)*(12/24)
<u>V50</u> V51	V55+(V43-V55)*(10/24)
V51 V52	V55+(V43-V55)*(8/24)
V53	V55+(V43-V55)*(6/24) V55+(V43-V55)*(4/24)
V54	V55+(V43-V55)*(2/24)
V55	VINP5
V56	VINP5 V60+(V55-V60)*(20/24)
V57	V60+(V55-V60)*(16/24)
V58	V60+(V55-V60)*(12/24)
V59	V60+(V55-V60)*(8/24)
V60	V62+(V55-V62)*(350/800)
V61	V62+(V60-V62)*(16/24)
V62	VINN6
V63	VINN7

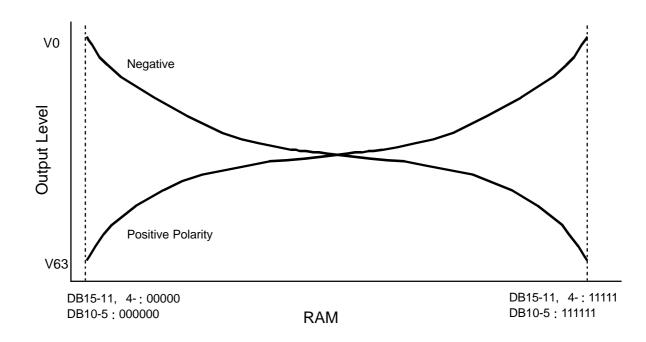
Note:			
Keep	the	relation	below
DDVD	H-V8	>1-1V	
V55-G	ND>	1-1V	

Table 43: Voltage Formula (Negative Polarity)

Pins		Formula	Micro-adjusting register value	Reference
KVN0	VDH*r		-	VINNO
KVN1	VDH -	V*5R/SUMRN	PKN02-00 = "000"	VIIIIIO
KVN2	VDH -	V*9R/SUMRN	PKN02-00 = "001"	
KVN3	VDH -	V*13R/SUMRN	PKN02-00 = "010"	
KVN4	VDH -	V*17R/SUMRN	PKN02-00 = "011"	
KVN5	VDH -	V*21R/SUMRN	PKN02-00 = "100"	VINN1
KVN6	VDH -	V*25R/SUMRN	PKN02-00 = "101"	
KVN7	VDH -	V*29R/SUMRN	PKN02-00 = "110"	
KVN8	VDH -	V*33R/SUMRN	PKN02-00 = "111"	
KVN9	VDH -	V*(33R+VRHN)/SUMRN	PKN12-10 = "000"	
KVN10	VDH -	V*(34R+VRHN)/SUMRN	PKN12-10 = "001"	
KVN11	VDH -	V*(35R+VRHN)/SUMRN	PKN12-10 = "010"	
KVN12	VDH -	V*(36R+VRHN)/SUMRN	PKN12-10 = "011"	
KVN13	VDH -	V*(37R+VRHN)/SUMRN	PKN12-10 = "100"	VINN2
KVN14	VDH -	V*(38R+VRHN)/SUMRN	PKN12-10 = "101"	
KVN15	VDH -	V*(39R+VRHN)/SUMRN	PKN12-10 = "110"	
KVN16	VDH -	V*(40R+VRHN)/SUMRN	PKN12-10 = "111"	
KVN17	VDH -	V*(45R+VRHN)/SUMRN	PKN22-20 = "000"	
KVN18	VDH -	V*(46R+VRHN)/SUMRN	PKN22-20 = "001"	
KVN19	VDH -	V*(47R+VRHN)/SUMRN	PKN22-20 = "010"	
KVN20	VDH -	V*(48R+VRHN)/SUMRN	PKN22-20 = "011"	
KVN21	VDH -	V*(49R+VRHN)/SUMRN	PKN22-20 = "100"	VINN3
KVN22	VDH -	V*(50R+VRHN)/SUMRN	PKN22-20 = "101"	
KVN23	VDH -	V*(51R+VRHN)/SUMRN	PKN22-20 = "110"	
KVN24	VDH -	V*(52R+VRHN)/SUMRN	PKN22-20 = "111"	
KVN24	VDH -	V*(68R+VRHN)/SUMRN	PKN32-30 = "000"	
KVN26	VDH -	V*(69R+VRHN)/SUMRN	PKN32-30 = "001"	
KVN27	VDH -	V*(70R+VRHN)/SUMRN	PKN32-30 = "010"	
KVN28	<u>VDH -</u> VDH -	V*(71R+VRHN)/SUMRN	PKN32-30 = "011"	
KVN29	VDH -	V*(72R+VRHN)/SUMRN	PKN32-30 = "100"	VINN4
KVN30	VDH -	V*(73R+VRHN)/SUMRN	PKN32-30 = "101"	VIIIIII
KVN31	VDH -	V*(74R+VRHN)/SUMRN	PKN32-30 = "110"	
KVN32	VDH -	V*(75R+VRHN)/SUMRN	PKN32-30 = "111"	
KVN33	VDH -	V*(80R+VRHN)/SUMRN	PKN42-40 = "000"	
KVN34	VDH -	V*(81R+VRHN)/SUMRN	PKN42-40 = "001"	
KVN35	VDH -	V*(82R+VRHN)/SUMRN	PKN42-40 = "010"	
KVN36	VDH -	V*(83R+VRHN)/SUMRN	PKN42-40 = "011"	
KVN37	VDH -	V*(84R+VRHN)/SUMRN	PKN42-40 = "100"	VINN5
KVN38	VDH -	V*(85R+VRHN)/SUMRN	PKN42-40 = 100 PKN42-40 = "101"	
KVN39	VDH -	V*(86R+VRHN)/SUMRN	PKN42-40 = 101 PKN42-40 = "110"	
KVN40	VDH -	V*(87R+VRHN)/SUMRN	PKN42-40 = "111"	
KVN40 KVN41	VDH -	V*(87R+VRHN+VRLN)/SUMRN		
KVN42				
KVN42 KVN43	VDH -	V*(91R+VRHN+VRLN)/SUMRN V*(95R+VRHN+VRLN)/SUMRN		
KVN43 KVN44		V*(99R+VRHN+VRLN)/SUMRN		
	VDH - VDH -			VINN6
KVN45 KVN46		V*(103R+VRHN+VRLN)/SUMR V*(108R+VRHN+VRLN)/SUMR		-
	VDH -	· · ·		
KVN47	VDH -	V*(111R+VRHN+VRLN)/SUMRI V*(115R+VRHN+VRLN)/SUMR		
KVN48 KVN49	VDH -	· /		. //. II. :=
r.vi149	VDH -	V*(120R+VRHN+VRLN)/SUMR	N -	VINN7

r: {[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR}/{VDR+[(SUMRP*SUMRN)/(SUMRP+SUMRN)]+EXVR}

SUMRP: Total of the positive polarity ladder resistance = 128 R + VRHP + VRLP + VRP


SUMRN: Total of the negative polarity ladder resistance = 128 R + VRLN + VRN

V: Voltage difference between KV0 to KV49 period = VDH*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]

Table 44 Voltage Formula (Negative Polarity)

U	
	Formula
V0	VINN0
V1	VINN1
V2	V3+(V1-V3)*(8/24)
V3	V8+(V1-V8)*(450/800)
V4	V8+(V3-V8)*(16/24)
V5	V8+(V3-V8)*(12/24)
V6	V8+(V3-V8)*(8/24)
V7	V8+(V3-V8)*(4/24)
	VINN2
V9	V20+(V8-V20)*(22/24)
V10	V20+(V8-V20)*(20/24)
V11	V20+(V8-V20)*(18/24)
V12	V20+(V8-V20)*(16/24)
V13	V20+(V8-V20)*(14/24)
V14	V20+(V8-V20)*(12/24)
V15	V20+(V8-V20)*(10/24)
V16	V20+(V8-V20)*(8/24)
V17	V20+(V8-V20)*(6/24)
V18	V20+(V8-V20)*(4/24)
V19	V20+(V8-V20)*(2/24)
V20	VINN3
V21	V43+(V20-V43)*(22/23)
V22	V43+(V20-V43)*(21/23)
V23	V43+(V20-V43)*(20/23)
V24	V43+(V20-V43)*(19/23)
V25	V43+(V20-V43)*(18/23)
V26	V43+(V20-V43)*(17/23)
V27	V43+(V20-V43)*(16/23)
V28	V43+(V20-V43)*(15/23)
V29	V43+(V20-V43)*(14/23)
V30	V43+(V20-V43)*(13/23)
V31	V43+(V20-V43)*(12/23)
V32	V43+(V20-V43)*(11/23)
V33	V43+(V20-V43)*(10/23)
V34	V43+(V20-V43)*(9/23)
V35	V43+(V20-V43)*(8/23)
V36	V43+(V20-V43)*(7/23)
V37	V43+(V20-V43)*(6/23)
V38	V43+(V20-V43)*(5/23)
V39	V43+(V20-V43)*(4/23)
V40	V43+(V20-V43)*(3/23)
V41	V43+(V20-V43)*(2/23)
V42	V43+(V20-V43)*(1/23)
V43	VINN4
V44	V55+(V43-V55)*(22/24)
V45	V55+(V43-V55)*(20/24)
V46	V55+(V43-V55)*(18/24)
V47	V55+(V43-V55)*(16/24)
V48	V55+(V43-V55)*(14/24)
V49	V55+(V43-V55)*(12/24)
V50	V55+(V43-V55)*(10/24)
V51	V55+(V43-V55)*(8/24)
V52	V55+(V43-V55)*(6/24)
V53	V55+(V43-V55)*(4/24)
V54	V55+(V43-V55)*(2/24)
V55	VINN5
V56	V60+(V55-V60)*(20/24)
V57	V60+(V55-V60)*(16/24)
V58	V60+(V55-V60)*(12/24)
V59	V60+(V55-V60)*(8/24)
V60	V62+(V55-V62)*(350/800)
V61	V62+(V60-V62)*(16/24)
V62	VINN6
V63	VINN7

Note:			
Keep	the	relation	below
DDVD	H-V8	3>1-1V	
V55-G	SND>	1-1V	

Relationship between RAM Data and Output

Figure 64: Relationship between RAM Data and Output

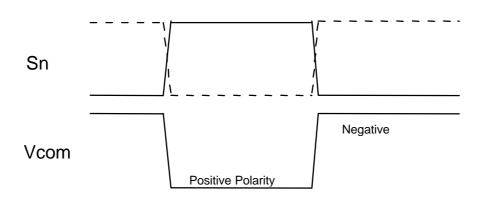


Figure 65: Relationship between Source Output and Vcom

The 8-color Display Mode

The HD66770 carries 8-color display mode. Using grayscale levels are V0 and V63 and all other level power supplies are halt. So that it attempts to lower power consumption. Also, during the 8-color mode, the Gamma micro adjustment register, PKP00-PKP52 and PKN00-PKN52 are invalid. Rewrite the data of GRAM R/B to 00000 or 11111, G to 000000 or 111111 before set the mode in order to select V0/V63. The level power supply (V1-V62) is in OFF condition during the 8-color mode.

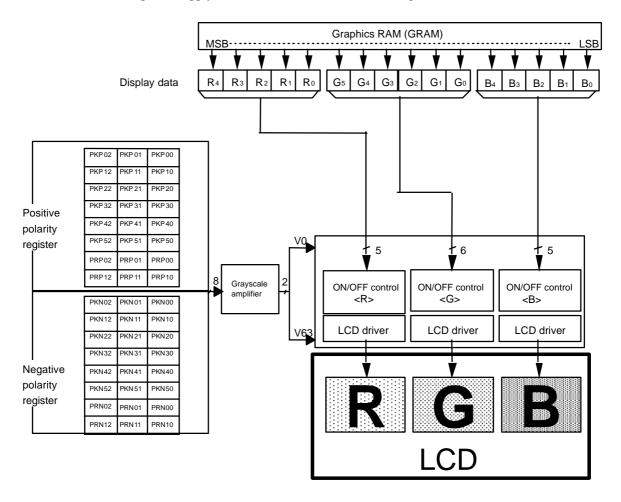
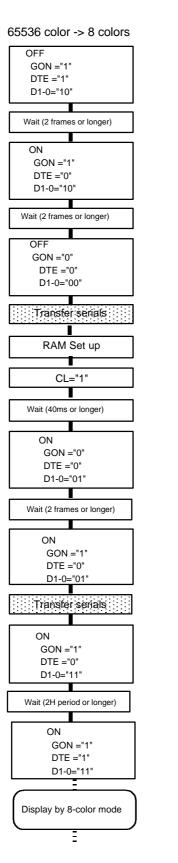
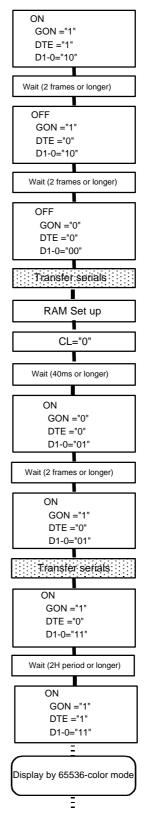




Figure 66: Grayscale Control

Rev.1.1 /April 2002

8 colors -> 65536 colors

Example of System Configuration

Following diagram indicates the system structure, which composes the 132 (horizontal) x 176 (vertical) dot TFT-LCD panel. This must be used together with the gate driver; HD66771 and the Power supply IC; HD667P00.

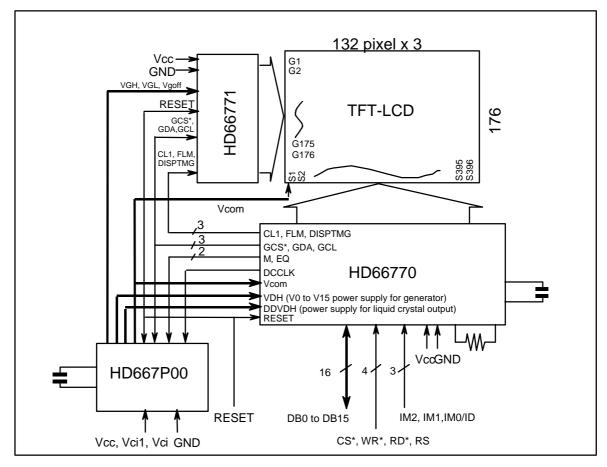
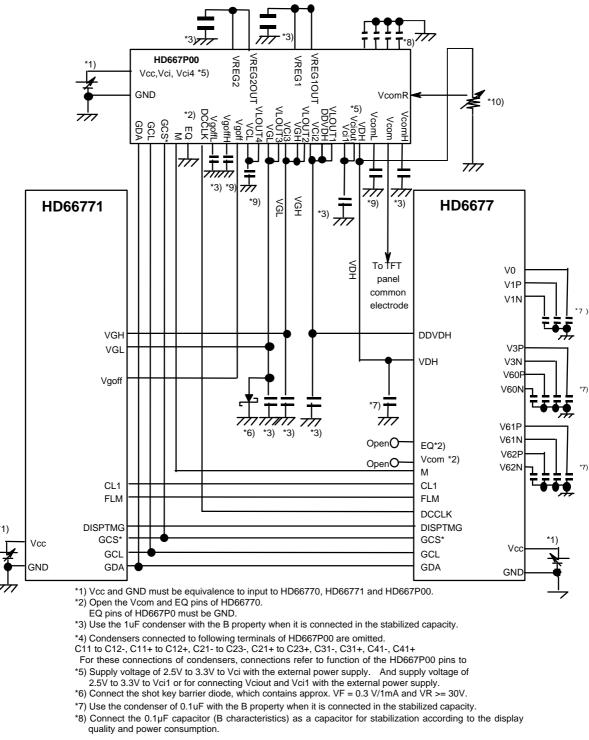
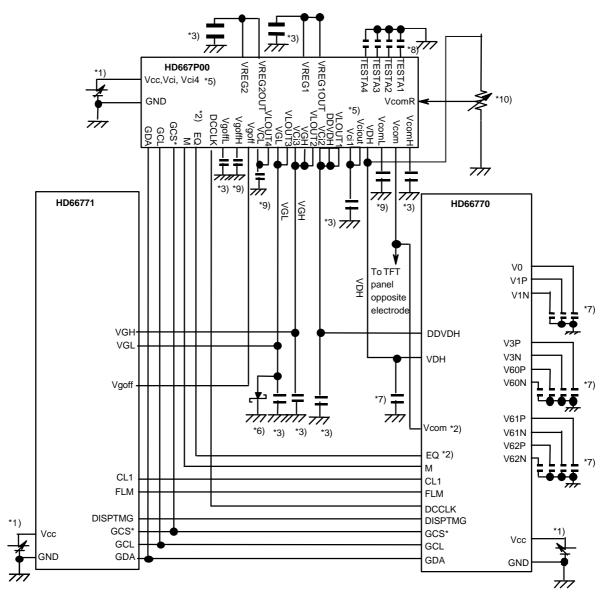



Figure 68 Example of TFT Display System


Setting of the Vcom voltage changes connecting method.

Following diagram indicates a connection example of the HD66771 and HD667P00 when VcomL < 0V, $0V \le VcomL < 5.5V$.

*9) When step-up circuit 4, VcomL and VgoffH are used, use the 1-μF capacitor (B characteristics) according to the setting mode. When they are not used, leave the pin open.
 *10) Use a vaiable resistor more than 200kΩ.

Figure 69: Connection Example of HD66770 and HD66771 (when VcomL < 0V)

Following diagram indicates a connection example of the gate driver, HD66771 and Power supply IC when $0 \le V \text{comL} \le 5.5$, and using equalizing function.

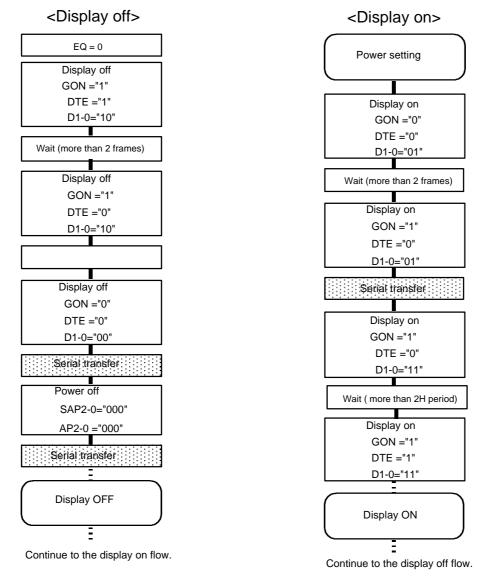
- *1) Vcc and GND must be equivalence to input to HD66770, HD66771 and HD667P00.
- *2) Connect EQ pins of HD66770 and EQ pins of HD667P00. Connect Vcom pins to Vcom pins of the HD667P00. Also, do not use when Vcom voltage is 5.5V or higher.
- *3) Use the 1uFcondenser with the B property when it is connected in the stabilized capacity.
- *4) Condensers connected to following terminals of HD667P00 are omitted.
- C11- to C12-, C11+ to C12+, C21- to C23-, C21+ to C23-, C31-, C31+, C41-, C41+
- For these connections of condensers, refer to function of the HD667P00 pins to connect.
- *5) Supply voltage of 2.5V to 3.3V to Vci with the external power supply. And supply voltage 2.5V to 3.3V to Vci 1 for connecting Vciout and Vci1 with the external power supply. When Vci1 is connecting to the external power supply, leave Vciout open.
- *6) Connect the schotkey barrier diode, which contains approx. VF = 0.3 V/1mA and $VR \ge 30V$.
- *7) Use the condenser of 0.1uF with the B property when it is connected in the stabilized capacity.
- *8) Connect the 0.1µF capacitor (B characteristics) as a capacitor for stabilization according to the display quality and power consumption.
- *9) When step-up circuit 4, VcomL and VgoffH are used, use the 1-µF capacitor (B characteristics) according to the setting mode. When they are not used, leave the pin open.
- *10) Use a variable resistor more than $200k\Omega$.

Figure 70: Connection Example of HD66770 and HD66771 (when 0V <= VcomL< 5.5V)

Rev.1.1 / April 2002

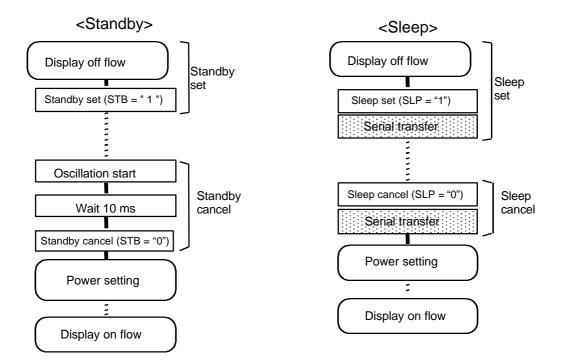
Specification of capacitor connected to HD66770 and HD667P00

The following table indicates the specification of capacitor connected to HD66770 and HD667P00.


Product	Capacity of capacitor	Recommendation resist pressure for capacitor	Connect pins
		6V	VEG1OUT, Vciout, C41-/+*1, VLOUT4*1, VcomH*1, VcomL
HD667P00	1μF (B character) 0.1μF (B character)	10V	VLOUT1, C11-/+, C12-/+, C21-/+, C22-/+, C23-/+
		25V	VREG2OUT. VLOUT2, VLOUT3, C31-/+, VgoffH*1, VgoffL
		6V	VDH, (TESTA1)*2, (TESTA2)*2, REGP*2, REGN*2
		25V	(TESTA3), (TESTA4)
HD66770	0.1µF (B character)	6V	V0, V1P, V1N, V3P, V3N, V60P, V60N, V62P, V62N, V63P, V63N

*1 According to the mode set HD667P00, there is some cases in which capacitor is unnecessary.

*2 Connect a capacitor to stabilize picture. Be noticed that power consumption may rise in great amount.


Instruction Setting Flow

When the HD66771/HD667P00 are used, follow the instruction setting flow. The instruction setting for the HD66771/HD667P00 is executed by the serial interface. When the instruction for the HD66771/HD667P00 is set, the serial transfer must be executed to the HD66771/HD667P00. The transfer to the HD66771/HD667P00 must be executed immediately after the instruction set. Follow the below serial transfer flow about each setting and then transfer must be executed.

Note: For more information on the flow for power settings, refer to the HD667P00 data sheet.

Figure 71

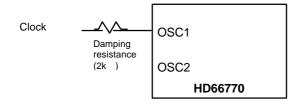
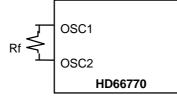

Note: For more information on the flow for power settings, refer to the HD667P00 data sheet.

Figure 72


Oscillation Circuit

The HD66770 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation frequency, see the Electric Characteristics Notes section.

1) External Clock Mode

2) External Resistance Oscillation Mode

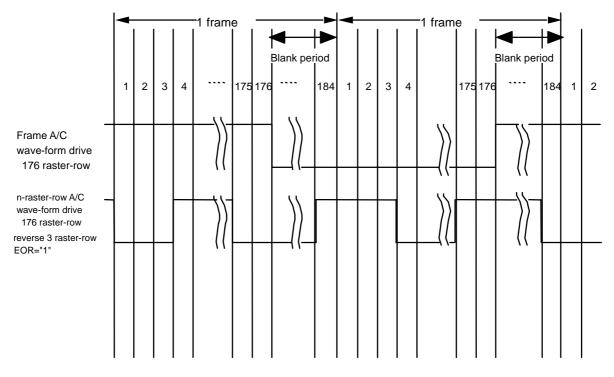
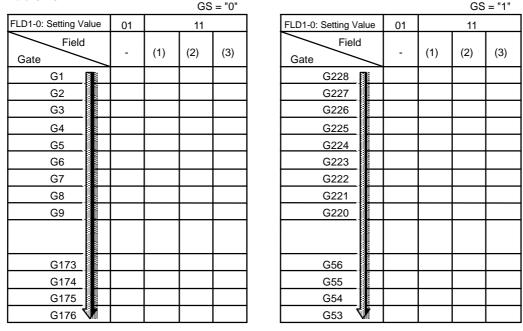

Note: The Rf resistance must be located near the OSC1/OSC2 pin on the master side.

Figure 73: Oscillation Circuits

n-raster-row Reversed AC Drive

The HD66770 supports not only the LCD reversed AC drive in a one-frame unit but also the n-raster-row reversed AC drive which alternates in an n-raster-row unit from one to 64 raster-rows. When a problem affecting display quality occurs, the n-raster-row reversed AC drive can improve the quality.

Determine the number of the raster-rows n (NW bit set value +1) for alternating after confirmation of the display quality with the actual LCD panel. However, if the number of AC raster-row is reduced, the LCD alternating frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.



Note: In an n-raster-row driving EOR should be "1" so that DC bias voltage is not applied.

Figure 74: Example of an AC Signal under n-raster-row Reversed AC Drive

Interlace Drive

HD66770 supports the interlace drive to protect from the display flicker. It splits one frame into n fields and drives. Determine the n fields (FLD bit stetting value) after confirming on the actual LCD display. Following table indicates n fields: the gate selecting position when it is 1 or 3. And the diagram below indicates the output waveform when the 3-field interlace drive is active.

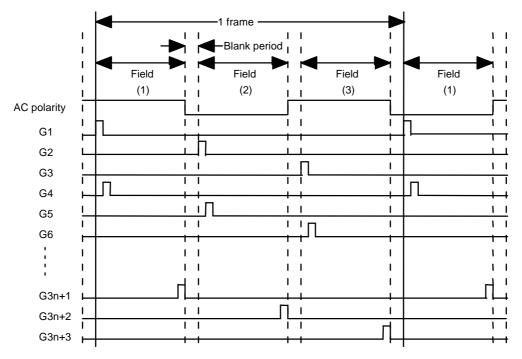


Figure 75: Gate output Timing on the 3 Field Interlace

AC Drive Timing

Following diagram indicates the timing of changing polarity on the each A/C drive method. LCD drive polarity is changed after every frame. After the A/C this timing, the blank (all outputs from the gate: Vgoff output) in 8H period is inserted. Also, LCD drive polarity is change after every field when it is on the interlace drive and a blank is inserted in every timing. The amount of blanking periods becomes 16H in a frame. When the reversed n-raster-row is driving, a blank period of the 8H period is inserted after all screens are drawn

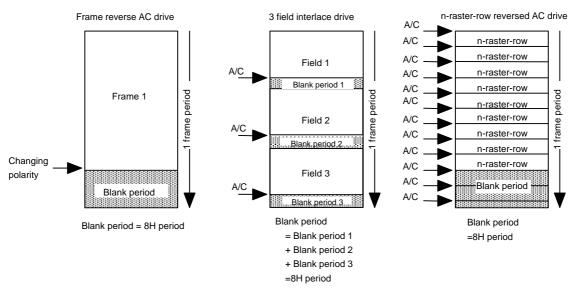


Figure 76

Frame Frequency Adjusting Function

The HD66770 has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the instruction setting (DIV, RTN) during the LCD driver as the oscillation frequency is always same.

If the oscillation frequency is set to high, animation or a static image can be displayed in suitable ways by changing the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power consumption mode can be entered. When high-speed screen switching for an animated display, etc. is required, the frame frequency can be set high.

Relationship between LCD Drive Duty and Frame Frequency

The relationship between the LCD drive duty and the frame frequency is calculated by the following expression. The frame frequency can be adjusted in the 1H period adjusting bit (RTN) and in the operation clock division bit (DIV) by the instruction.

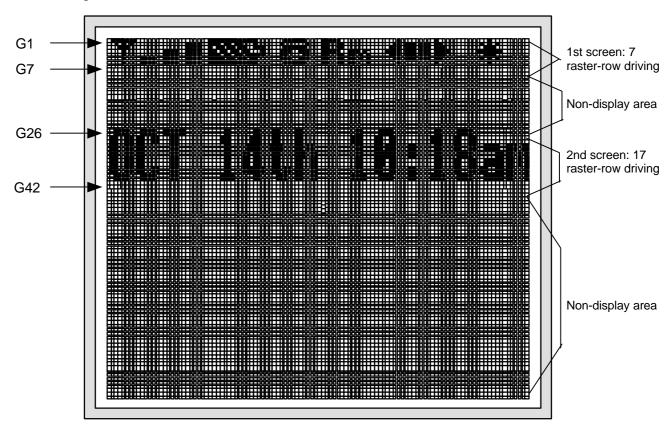
1	(Formula for the free		
	(Formula for the frai	ne nequency)	
		fosc	
	Frame Frequency =	Clock cycles per raster-row x division ratio x (Line+8)	[Hz]
		fosc: R-C oscillation frequency	
		Line: Numbers of raster-rows (NL bit)	
		Clock cycles per raster-row: RTN bit	
		Division ratio: DIV bit	

Example of Calculation

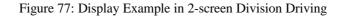
In case of maximum frame frequency = 60 Hz;

Driver raster-row: 176

1H period: 16 clock (RTN3 to 0 = "0000") Operation clock division ratio: 1 division fosc = 60Hz x (0+16) clock x 1 division x (176+8) lines = 177 [kHz]


In this case, the CR oscillation frequency becomes 177 kHz. The external resistance value of the R-C oscillator must be adjusted to be 177 kHz.

Screen-division Driving Function


The HD66770 can select and drive two screens at any position with the screen-driving position registers (R14 and R15). Any two screens required for display are selectively driven and reducing LCD-driving voltage and power consumption.

For the 1st division screen, start lines (SS17 to 10) and end lines (SE17 to 10) are specified by the 1st screen-driving position register (R14). For the 2nd division screen, start line (SS27 to 20) and end lines (SE27 to 20) are specified by the 2nd screen-driving position register (R15). The 2nd screen control is effective when the SPT bit is 1. The total count of selection-driving lines for the 1st and 2nd screens must be the number of LCD drive raster-rows or less.

Driving on 2 screens

Driving raster-row: NL4-0 = "10101" (176 lines) 1st screen setting: SS17-10 = "00"H, SE17-10 = "06"H 2nd screen setting: SS27-20 = "19"H, SE27-20 = "29"H, SPT = "1"

Restrictions on the 1st/2nd Screen Driving Position Register Settings

The following restrictions must be satisfied when setting the start line (SS17 to 10) and end line (SE17 to 10) of the 1^{st} screen driving position register (R14) and the start line (SS27 to 20) and end line (SE27 to 20) of the 2^{nd} screen driving position register (R15) for the HD66770. Note that incorrect display may occur if the restrictions are not satisfied.

Table 46: Restrictions on the 1st/2nd Screen Driving Position Register Settings

 1^{st} Screen Driving (SPT = 0)

Register setting	Display operation
(SE17 to 10) - (SS17 to 10) = NL	Full screen display
	Normally displays (SE17 to 10) to (SS17 to 10)
(SE17 to 10) – (SS17 to 10) < NL	Partial display
	Normally displays (SE17 to 10) to (SS17 to 10)
	In all other display area refers to the output level
	based on the PT setting. (non-display)
(SE17 to 1) - (SS17 to 10) > NL	
	Setting disabled

Note 1: SS17 to $10 \le$ SE17 to $10 \le$ AFH Note 2: Setting SE27 to 20 and SS27 to 20 are invalid.

 2^{nd} Screen Driving (SPT = 1)

Display operation						
Register setting						
((SE17 to 10) – (SS17 to 10))	Full screen display					
+ ((SE27 to 20) - (SS27-20)) = NL	Normally displays (SE17 to 10) to (SE17 to 10)					
((SE17 to 10) – (SS17 to 10))	Partial display					
+ ((SE27 to 20) - (SS27 to 20)) < NL	Normally displays (SE27 to 20) to (SS17 to 10)					
	In all other display area refers to the output level					
	based on the PT setting. (non-display)					
((SE17 to 10) – (SS17 to 10))	Setting disabled					
+ ((SE27 to 20) - (SS27 to 20)) > NL						

Table 47

Note 1: SS17 to 10 <= SE17 to 10 < SS27 to 20 <= SE27 to 20 <= AFH Note 2: (SE27 to 20) – (SS17 to 10) <= NL

The driver output can not be set for non-display area during the partial display. Determine based on characteristic of the display panels.

PT1	PT0	Source output i	Gate output in non-		
		Positive polarity	Negative polarity	display area	
0	0	V63	V0	Normal operation	
0	1	V63	V0	Vgoff	
1	0	GND	GND	Vgoff	
1	1	Hi-z	Hi-z	Vgoff	
			10		

Table 48

Refer to the following flow to set up the partial display.

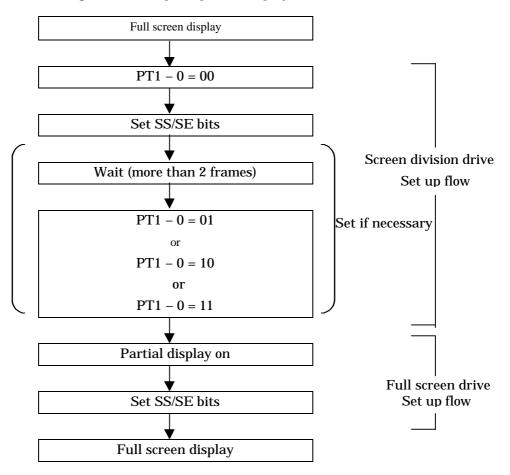


Figure 78

Absolute Maximum Ratings

Table 49

Item	Symbol	Unit	Value	Notes*
Power supply voltage (1)	Vcc	V	-0.3 to + 4.6	1, 2
Power supply voltage (2)	DDVDH- GND	V	-0.3 to + 4.6	1, 3
Input voltage	Vt	V	-0.3 to Vcc + 0.3	1
Operating temperature	Topr	°C	-40 to + 85	1, 4
Storage temperature	Tstg	°C	-55 to + 110	1, 5

Notes: 1.If the LSI is used above these absolute maximum ratings, it may become permanently damaged. Using the LSI within the following electrical characteristic limit is strongly recommended for normal operation. If these electrical characteristic conditions are also exceeded, the LSI will malfunction and cause poor reliability.

2. Vcc \geq GND must be maintained

 $3.DDVDH \ge GND$ must be maintained.

4.DC characteristics and AC characteristics of shipping chips and shipping wafer are guaranteed at $85 \ ^{\circ}C$.

5. This temperature specifications apply to the TCP package.

DC Characteristics (V_{CC} = 1.8 to 3.3 V, Ta = -40 to $+85^{\circ}C^{*1}$)

Item	Symbol	Unit	Test Condition	Min	Тур	Max	Notes
Input high voltage	V _{IH}	V	$V_{\rm CC}$ = 1.8 to 3.3 V	$0.7 \; V_{\text{CC}}$	_	V _{cc}	2, 3
Input low voltage	V _{IL}	V	V_{cc} = 1.8 to 3.3 V	-0.3	_	$0.15V_{\rm CC}$	2, 3
Output high voltage (1) (DB0-15 pins)	V_{OH1}	V	I _{OH} = -0.1 mA	$0.75V_{CC}$	—	—	2
Output low voltage (1) (DB0-15 pins)	V _{OL1}	V	$V_{cc} = 1.8 \text{ to } 2.4 \text{ V},$ $I_{oL} = 0.1 \text{ mA}$	_	—	$0.2 V_{CC}$	2
			VCC = 2.4 to 3.3 V, $I_{OL} = 0.1 \text{ mA}$	_	_	0.15V _{cc}	2
I/O leakage current	I _{Li}	μA	Vin = 0 to V_{cc}	-1	_	1	4
Current consumption during normal operation $(V_{cc} - GND)$	I _{OP}	μA	R-C oscillation $V_{CC} = 3.0 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$ $f_{OSC} = 177 \text{ Khz} (176$ duty), RAM data : 0000h		140	210	5,6
Current consumption during standby mode $(V_{cc} - GND)$	I _{st}	μA	V _{cc} = 3 V, Ta = 25°C	_	0.1	5	
LCD drive power supply current (DDVDH – GND)		μΑ	$\begin{split} & V_{CC} = 3.0 \; V, \; V_{LCD} = 5.5 V \\ & VDH = 5.0 V \; CR \; oscillation; \\ & f_{OSC} = 177 \; kHz \; (176 \; duty), \\ & Ta = 25^\circ C, \; RAM \; data : \\ & 0000h, \; REV = "0", \; SAP = \\ & "001", \; VRN4-0 = "0", \\ & VRP4-0 = "0", \; PKP52-00 = \\ & "0", \; PRP12-00 = "0", \\ & VRN4-0 = VRP4-0 = "0", \\ & PKP52-00 = "0", \; PRP12-00 \\ & = "0" \end{split}$	_	295	400	5,6
LCD drive voltage (DDVDH – GND)	V_{LCD}	V		4.5	—	5.5	
Output voltage deviation	Vo	^{m}V		_	5	_	7
Dispersion of the average output voltage	V	M		_	_		8

AC Characteristics (V_{CC} = 1.8 to 3.3 V, Ta = -40 to $+85^{\circ}C^{*1}$)

Clock Characteristics (V_{CC} = 1.8 to 3.3 V)

Table 51

Item	Symbol Unit		Test Condition	Min	Тур	Max	Notes
External clock frequency	Fcp	kHz	$V_{\rm CC}$ = 1.8 to 3.3 V	100	200	600	9
External clock duty ratio	Duty	%	$V_{\rm CC} = 1.8$ to 3.3 V	45	50	55	9
External clock rise time	Trcp	μs	$V_{CC} = 1.8$ to 3.3 V		_	0.2	9
External clock fall time	Tfcp	μs	$V_{CC} = 1.8$ to 3.3 V		_	0.2	9
R-C oscillation clock	f_{OSC}	kHz	$Rf = 240k\Omega$,	152	190	228	10
			$V_{\rm CC} = 3 \text{ V}$				

68-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0)

(Vcc = 1.8 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	600	—	
	Read	t _{CYCE}	ns	Figure 1	800	—	
Enable high-level pulse width	Write	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	90		
	Read	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	350		
Enable low-level pulse width	Write	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	300		
	Read	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	400		
Enable rise/fall time		$t_{Er}^{}, t_{Ef}^{}$	ns	Figure 1	_		25
Set up time (RS, R/W to E, CS*)		t _{ASE}	ns	Figure 1	10		
Address hold time		$\mathbf{t}_{\mathrm{AHE}}$	ns	Figure 1	5		
Write data set up time		t _{DSWE}	ns	Figure 1	60		
Write data hold time		t _{HE}	ns	Figure 1	15		
Read data delay time		t _{DDRE}	ns	Figure 1			200
Read data hold time		t _{DHRE}	ns	Figure 1	5		

Rev.1.1 / April 2002

High-speed Write Mode (HWM=1)

(Vcc = 1.8 to 2.4 V)

Table 53

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	200		
	Read	t _{CYCE}	ns	Figure 1	800		
Enable high-level pulse width	Write	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	90		
	Read	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	350	_	
Enable low-level pulse width	Write	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	90		
	Read	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	400		
Enable rise/fall time		$t_{\rm Er}^{}, t_{\rm Ef}^{}$	ns	Figure 1	_	_	25
Set up time (RS, R/W to E, CS*)		t _{ASE}	ns	Figure 1	10		
Address hold time		t _{AHE}	ns	Figure 1	5	_	
Write data set up time		t _{DSWE}	ns	Figure 1	60		
Write data hold time		t _{HE}	ns	Figure 1	15		
Read data delay time		t _{DDRE}	ns	Figure 1	_	_	200
Read data hold time		t _{DHRE}	ns	Figure 1	5		

Normal Write Mode (HWM=0)

(Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	250		
	Read	t _{CYCE}	ns	Figure 1	500		
Enable high-level pulse width	Write	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	40	—	
	Read	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	250		—
Enable low-level pulse width	Write	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	70		
	Read	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	200		
Enable rise/fall time		$t_{\rm Er}^{}, t_{\rm Ef}^{}$	ns	Figure 1	—		25
Set up time (RS, R/W to E, CS*)		t _{ASE}	ns	Figure 1	10	—	
Address hold time		t _{AHE}	ns	Figure 1	5		
Write data set up time		t _{DSWE}	ns	Figure 1	60		
Write data hold time		t _{HE}	ns	Figure 1	15		_
Read data delay time		t _{DDRE}	ns	Figure 1	—		200
Read data hold time		t _{DHRE}	ns	Figure 1	5	_	_

Rev.1.1 / April 2002

High-Speed Write Mode (HWM=1)

(Vcc = 2.4 V to 3.3 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Enable cycle time	Write	t _{CYCE}	ns	Figure 1	100		
	Read	t _{CYCE}	ns	Figure 1	500		
Enable high-level pulse width	Write	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	40		
	Read	$\mathrm{PW}_{\mathrm{EH}}$	ns	Figure 1	250		
Enable low-level pulse width	Write	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	40		
-	Read	$\mathrm{PW}_{\mathrm{EL}}$	ns	Figure 1	200		
Enable rise/fall time		$t_{\rm Er}^{}, t_{\rm Ef}^{}$	ns	Figure 1			25
Set up time (RS, R/W to E, CS*)		t _{ASE}	ns	Figure 1	10		
Address hold time		t _{AHE}	ns	Figure 1	5		
Write data set up time		t _{DSWE}	ns	Figure 1	60		
Write data hold time		$t_{\rm HE}$	ns	Figure 1	15		
Read data delay time		t _{DDRE}	ns	Figure 1		_	200
Read data hold time		t _{DHRE}	ns	Figure 1	5		

80-system Bus Interface Timing Characteristics

Normal Write Mode (HWM=0)

(Vcc = 1.8 to 2.4 V)

Table 56

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	600		_
	Read	t _{CYCR}	ns	Figure 2	800		
Write low-level pulse width		$\mathrm{PW}_{\mathrm{LW}}$	ns	Figure 2	90		
Read low-level pulse width		$\mathrm{PW}_{\mathrm{LR}}$	ns	Figure 2	350		
Write high-level pulse width		PW _{HW}	ns	Figure 2	300		
Read high-level pulse width		$\mathrm{PW}_{\mathrm{HR}}$	ns	Figure 2	400		
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	—	—	25
Setup time		t _{AS}	ns	Figure 2	10	_	_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5	_	_
Write data set up time		t _{DSW}	ns	Figure 2	60		
Write data hold time		t _H	ns	Figure 2	15	—	—
Read data delay time		t _{DDR}	ns	Figure 2			200
Read data hold time		t _{DHR}	ns	Figure 2	5	—	—

High-Speed Write Mode (HWM=1)

(Vcc = 1.8 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	200	_	
	Read	t _{CYCR}	ns	Figure 2	800		_
Write low-level pulse width		$\mathrm{PW}_{\mathrm{LW}}$	ns	Figure 2	90		
Read low-level pulse width		PW _{LR}	ns	Figure 2	350		
Write high-level pulse width		$\mathrm{PW}_{\mathrm{HW}}$	ns	Figure 2	90		_
Read high-level pulse width		$\mathrm{PW}_{\mathrm{HR}}$	ns	Figure 2	400		
Write/Read rise/fall time		t _{wRr, WRf}	ns	Figure 2			25
Set up time		t _{AS}	ns	Figure 2	10		_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5		
Write data set up time		t _{DSW}	ns	Figure 2	60		_
Write data hold time		t _H	ns	Figure 2	15	_	_
Read data delay time		t _{DDR}	ns	Figure 2	_		200
Read data hold time		t _{DHR}	ns	Figure 2	5	_	—

Rev.1.1 / April 2002

Normal Write Mode (HWM=0)

(Vcc = 2.4 to 3.3 V)

Table 58

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	250	_	_
	Read	t _{CYCR}	ns	Figure 2	500		
Write low-level pulse width		$\mathrm{PW}_{\mathrm{LW}}$	ns	Figure 2	40		
Read low-level pulse width		$\mathrm{PW}_{\mathrm{LR}}$	ns	Figure 2	250		_
Write high-level pulse width		$\mathrm{PW}_{\mathrm{HW}}$	ns	Figure 2	70		_
Read high-level pulse width		$\mathrm{PW}_{\mathrm{HR}}$	ns	Figure 2	200		
Write/Read rise/fall time		t _{WRr, WRf}	ns	Figure 2	_		25
Set up time		t _{AS}	ns	Figure 2	10		
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5		
Write data setup time		t _{DSW}	ns	Figure 2	60		
Write data hold time		t _H	ns	Figure 2	15		
Read data delay time		t _{DDR}	ns	Figure 2			200
Read data hold time		t _{DHR}	ns	Figure 2	5		_

High-Speed Write Mode (HWM=1)

(Vcc = 2.4 to 3.3 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Bus cycle time	Write	t _{CYCW}	ns	Figure 2	100	_	_
	Read	t _{CYCR}	ns	Figure 2	500	_	_
Write low-level pulse width		$\mathrm{PW}_{\mathrm{Lw}}$	ns	Figure 2	40	_	
Read low-level pulse width		$\mathrm{PW}_{\mathrm{LR}}$	ns	Figure 2	250	_	
Write high -level pulse width		$\mathrm{PW}_{\mathrm{HW}}$	ns	Figure 2	40		_
Read high -level pulse width		$\mathrm{PW}_{\mathrm{HR}}$	ns	Figure 2	200		_
Write/Read rise/fall time		t _{WRr} , _{WRf}	ns	Figure 2			25
Set up time		t _{AS}	ns	Figure 2	10		_
(RS to CS*, WR*, RD*)							
Address hold time		t _{AH}	ns	Figure 2	5	_	
Write data set up time		t _{DSW}	ns	Figure 2	60	_	
Write data hold time		t _H	ns	Figure 2	15	_	_
Read data delay time		t _{DDR}	ns	Figure 2	_	—	200
Read data hold time		t _{DHR}	ns	Figure 2	5	—	_

Clock Synchronized Serial Interface Timing Characteristics

(Vcc = 1.8 to 2.4 V)

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Serial clock cycle time	Write (received)	t _{scyc}	us	Figure 3	0.1	—	20
	Read	t _{SCYC}	us	Figure 3	0.25	_	20
	(transmitted)						
Serial clock high-level pulse width	Write (received)	t _{sch}	ns	Figure 3	40		_
	Read	t _{SCH}	ns	Figure 3	120		_
	(transmitted)						
Serial clock low-level pulse width	Write (received)	t _{SCL}	ns	Figure 3	40		_
	Read	t _{SCL}	ns	Figure 3	120		
	(transmitted)						
Serial clock rise/fall time		$t_{\rm scr, \ scf}$	ns	Figure 3	_		20
Chip select set up time		t _{CSU}	ns	Figure 3	20		
Chip select hold time		t _{CH}	ns	Figure 3	60		
Serial input data set up time		t _{sisu}	ns	Figure 3	30		
Serial input data hold time		t _{SIH}	ns	Figure 3	30	_	
Serial input data delay time		t _{sod}	ns	Figure 3			200
Serial input data hold time		t _{soh}	ns	Figure 3	5		_

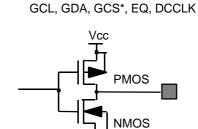
Rev.1.1 / April 2002

(Vcc = 2.4 to 3.3 V)

Table 61

Item		Symbol	Unit	Test Condition	Min	Тур	Max
Serial clock cycle time	Write (received)	t _{SCYC}	us	Figure 3	0.1	_	20
	Read	t _{SCYC}	us	Figure 3	0.15		20
	(transmitted)						
Serial clock high-level pulse width	Write (received)	t _{SCH}	ns	Figure 3	40		—
	Read	t _{SCH}	ns	Figure 3	70		
	(transmitted)						
Serial clock low-level pulse	Write	t_{SCL}	ns	Figure 3	40		
width	(received)						
	Read	t_{SCL}	ns	Figure 3	70		
	(transmitted)						
Serial clock rise/fall time		$t_{\rm scr, \ scf}$	ns	Figure 3			20
Chip select set up time		t _{CSU}	ns	Figure 3	20		_
Chip select hold time		t _{CH}	ns	Figure 3	60		
Serial input data set up time		t _{SISU}	ns	Figure 3	30		
Serial input data hold time		t _{SIH}	ns	Figure 3	30		
Serial output data delay time		t _{sod}	ns	Figure 3	_		130
Serial output data hold time		t _{SOH}	ns	Figure 3	5		

Reset Timing Characteristics (V $_{\rm CC}$ = 1.8 to 3.3 V)


Item	Symbol	Unit	Test Condition	Min	Тур	Max
Reset low-level width	t _{RES}	ms	Figure 4	1	_	_
Reset rise time	t _{rRES}	us	Figure 4		_	10

Electrical Characteristics Notes

- 1. For bare die and wafer products, specified up to 85°C.
- 2. The following three circuits are I pin, I/O pin, O pin configurations.

Pins: RESET*, CS*, E/WR*/SCL RW/RD RS, RW/RD, RS, OSC1, IM2-1, IM0/ID, TEST1, TEST

GND

Pins: OSC1, CL1, FLM, M, DISPTMG

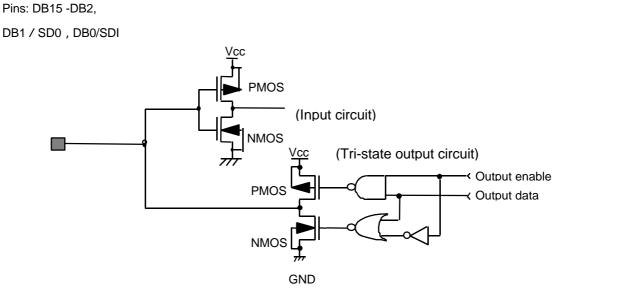


Figure 79 I/O Pin Configuration

HD66770 Rev.1.1 / April 2002

- 3.The TEST pin must be grounded and the IM2/1 and IM0/ID pins must be grounded or connected to Vcc.
- 4. This exclude the current flowing through output drive MOSs.
- 5. This exclude the current flowing through the input/output units. The input level must be fixed high or low because through current increases if the CMOS input is left floating. Even if the CS pin is low or high when an access with the interface pin is not performed, current consumption does not change.
- 6. The following show the relationship between the operation frequency (fosc) and current consumption (Icc) (figure).

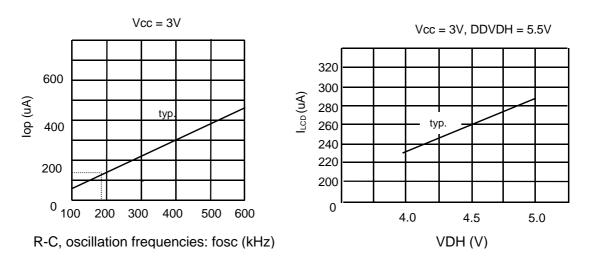


Figure 80 Relationship between the Operation Frequency and Current Consumption

7.Output-voltage deviation is the difference of output voltage between the pins next to each other. The pins output same data, and output voltage deviation is only for reference.

- 8.Dispersion of the average output voltage is the difference of the average of output voltage between chips next to each other.
- 9. Applies to the external clock input (figure).

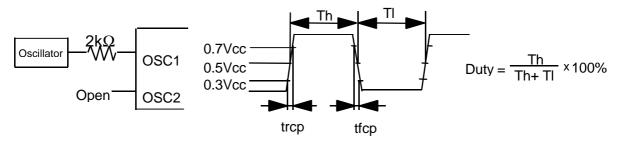
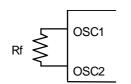



Figure 81 External Clock Supply

Table 63

10.Applies to the internal oscillator operations using external oscillation resistor Rf (figure and table).

Since the oscillation frequency varies depending on the OSC1 and OSC2 pin capacitance, the wiring length to these pins should be minimized.

Figure 82 Internal Oscillation

(Referential Data)

	R	-C Oscillation Fr	equency: fosc (kH	Z)	
Oscillation Resistance (k W)	Vcc = 1.8 V	Vcc = 2 V	Vcc = 2.4 V	Vcc = 3V	Vcc = 3.3V
110kΩ	299	333	372	401	411
150kΩ	234	258	284	305	311
180kΩ	202	222	243	258	263
200 kΩ	186	203	222	235	240
240 kΩ	160	173	188	198	202
270 kΩ	145	157	169	177	181
300 kΩ	132	143	153	161	163
390 kΩ	106	113	121	126	128
430 kΩ	97	104	110	115	116

AC Characteristics Test Load Circuits

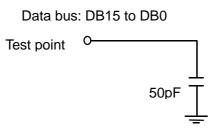


Figure 83 Load Circuit

Timing Characteristics

68-system Bus Operation

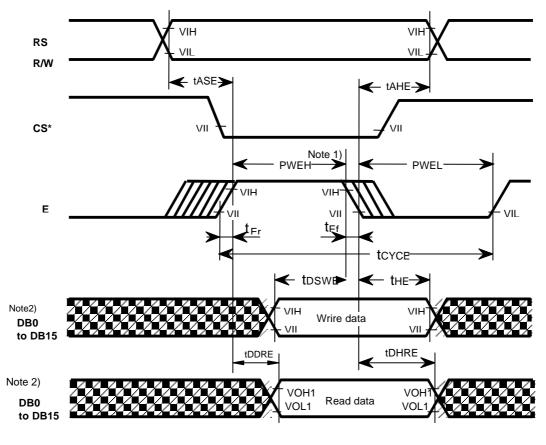


Figure 84 68-system Bus Timing

Notes: 1) PWEH is specified in the overlapped period when CS* is low and E is high.

2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used.

Fix the DB7-0 pins to Vcc or GND.

80-system Bus Operation

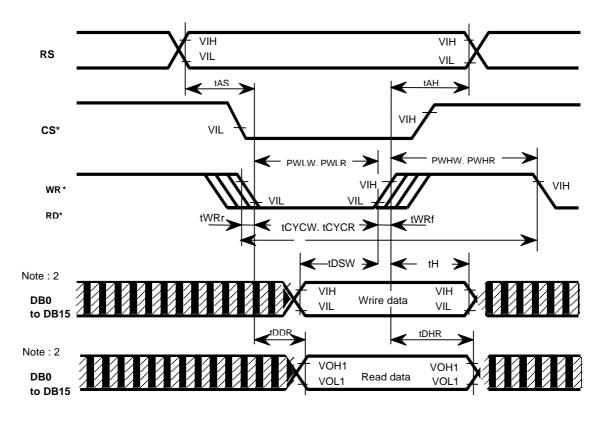
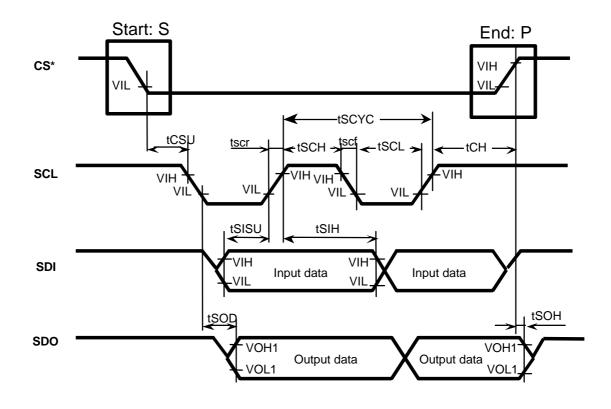
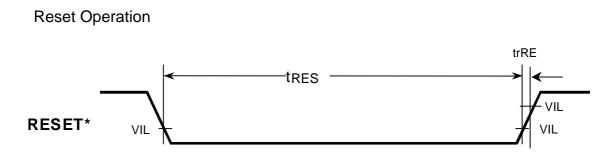
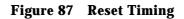



Figure 85 80-system Bus Timing


Notes: 1) PWLW and PWLR is specified in the overlapped period when CS* is low and WR* or RD* is low.


2) Parallel data transfer is enabled on the DB15-8 pins when the 8-bit bus interface is used. Fix the DB7-0 pins to Vcc or GND.

Clock Synchronized Serial Interface Operation

Maintenance history report

P = page, L = line, - = blank

Rev	Date	Page	Maintenance history
0.6	2001.5.27	6,9	Chip thickness (from 400 um to 550 um)
		19,35	VRH4 bit deleted and PON bit added
		,37	
		23	The explanation of REV bit changed
		32	Miswriting in the relation between GRAM data and Grayscale
			level
		47	Miswriting in B02
		62	Miswriting in the formula for V60
		67,71	Setting flow changed (put " wait 2H period or longer" before ON)
		69-70	The connection example changed (condenser between Vcom-Vgoff deleted) (from V61P, V61N to V63P, V63N)
		81-92	AC characteristic added
			Other miswriting
0.7	2001.6.11	43	The example of the operation of high-speed consecutive writing to RAM (8-bit bus interface) added
		62,64	Miswriting in Voltage formula for V8 and V55
1.0	2001.6.22	67	Waiting time for color transition (from 200ms to 400ms)
		82,83	specification added (current consumption, LCD drive power
			supply, deviation of output voltage, dispersion average of
			output voltage, RC oscillation clock)
		84,86	specification changed (68 system bus interface/Enable low-
			level pulse width PWEL/ from 100ns to 70ns) (80 system bus
			interface/ write high-level pulse width PWHW/ from 100ns to
			70ns)
		89	graph for note 6 added
		90	table for note 10 added
1.0-1	2001.10.2	5	EQ (From "output the timing for equalizing Low: Normal display High: Equalizing " to "Indicate setting of the Vcom output to its high-impedance state during transitions of Vcom when Vcom is being AC-cycled. Low: VcomH or VcomL is being output on the Vcom pin. High: Vcom pin is in high-impedance state"
			DISPTMG (From "Non-display" to "Output Voff signal")
			GCS (From "transfer" to "transfer data")
		21	BT2-0 (Add the sentence below. "Lower amplification of the
			step-up circuit consumes less current.")
			SLP (from "Only the following instructions can be executed
			during the sleep mode." to "Only serial transfer to a gate
			driver / power-supply IC and the following instructions can be
			executed during the sleep mode)"
		22	VC2-0 (from "VREG1" to "VREG1OUT")
		-	VRL3-0 (from "from 2 to 8.5 times" to "from –2 to –8.5 times")
		23	VDV4-0 (from "When Vcom is driven in A/C amplitude." to "Sets amplification factors for Vcom and Vgoff while Vcom AC drive is being performed.")
		26	Table14 (from "VGH" to "Vgon")
		26	

Rev.1.1 / April 2002

4.0.4	0004 40 0	07	TE (fuene "shirts and the state of the state
1.0-1	2001.10.2	27	TE (from "driver/IC chip of the power driver" to "driver/Power
			supply IC")
			* (from "gate driver son after" to "gate driver / power supply IC
			soon after")
		28	Table18 (from "the gate driver instruction" to "Power supply
			IC (HD667P00) instructions")
			from "IC chip of the power supply" to "Power supply IC
			(HD667P00)"
		31	Note (from "common driver" to "gate driver")
		32	SS17-0 (from "common driver" to "gate driver")
			SE17-0 (from "black display driving " to "bib-selection
			driving")
			SE27-0 (from "4FH" to "AFH")
		40	3. (from "B-pattern LC AC drive control" to "LCD driving AC
			control)"
		51	Restriction on window address-range settings (from "3FH" to
			"83H")
			Restriction on address settings during the window address
			(from "HSA5" to "HSA7")
		63	from "subtle adjustment" to "micro adjustment"
		66	Title for Y axis of Figure 60,61,and 62 (from vertical writing to
			horizontal writing)
			Add the number 1 and 2 to "Gradient adjusting register " and
			"Amplitude adjusting register".
		67	Add the number 3 to "Micro-adjusting register".
		68	Add the sub-title "Block configuration" for the title "Ladder
			Registor/8 to 1 Selector"
		75	Corrected the Waiting time (from 400ms to 40ms)
		76	Corrected the title. (from "System Structure Example " to
			"Example of System Configuration")
		77	Corrected Note 4 (from "Following connection capacity if
			GD667P00 is not stated." To "Condensers connected to
			following terminals of HD667P00 are omitted.")
		78	Corrected Note 1 (from HD667P0 to HD667P00)
		79	Add the sentence at the end of the sentence. (Follow the
			below serial transfer flow about each setting and then
			transfer must be executed.)
L		1	/

P = page,	L = line, - =	= blank
-----------	---------------	---------

Rev	ge, ∟ – iiiie, Date		Maintananaa history
-		Page	Maintenance history
1.0-1	2001.10.2	81	Delete unnecessary note from Figure 72 (200KHz)
			Correct Note (from "The Rf resistance must be located near
			the OSC1/OSC2 pin on the chip." to "The Rf resistance must
			be located near the OSC1/OSC2 pin on the master side.")
		82	Correct Note (from "Specify the number of AC drive raster-
			rows and the necessity of EOR so that DC bias is not
			generated the liquid crystal." to "In an n-raster-row driving EOR should be "1" so that DC bias voltage is not applied.)"
		83	Correct the sentence (L5, "field interlace,,, " to "3-field interlace,,,")
		84	Correct the title (from "Timing of Changing Polarity" to "AC Driving Timing")
			Add a sentence (in L5 "The amount of blanking periods
			becomes 16H in a frame.")
		86	Correct a sentence (in L7-8 ",,,the 1st and 2nd screens must
			correspond to the LCD-driving duty set value." to ",,,the 1st and
			2 nd screens must be the number of LCD drive raster-rows or
			less.")
1.1	2002.4.5	7	Change product model name. "From HD66770 to HD667A70"
		10	Change product model name. "From HD66770 to HD667B70"
		33	Add Note 3
		37	Add Grayscale reference-value adjusting resistor. (R3F)
			Add an explanation sentence for VDR1-0.
		39	Add Grayscale reference-value adjusting resistor. (R3Fh)
		64-68	Add Grayscale reference-value adjusting resistor.
		69,71	Change a formula (r) for adding grayscale reference-value
			adjusting resistor.
		77,78	Change example chart of connection. (Figure 69, and 70)
		79	Add New page, "Specification of capacitor".
		80	Change a flow of "Display OFF" (Add "EQ=1")
	•		